tree-of-thought-llm/models.py

45 lines
1.7 KiB
Python
Raw Permalink Normal View History

2023-05-23 22:34:41 +00:00
import os
import openai
import backoff
completion_tokens = prompt_tokens = 0
2023-05-24 15:08:10 +00:00
api_key = os.getenv("OPENAI_API_KEY", "")
if api_key != "":
openai.api_key = api_key
else:
print("Warning: OPENAI_API_KEY is not set")
api_base = os.getenv("OPENAI_API_BASE", "")
if api_base != "":
print("Warning: OPENAI_API_BASE is set to {}".format(api_base))
openai.api_base = api_base
2023-05-23 22:34:41 +00:00
@backoff.on_exception(backoff.expo, openai.error.OpenAIError)
def completions_with_backoff(**kwargs):
return openai.ChatCompletion.create(**kwargs)
def gpt(prompt, model="gpt-4", temperature=0.7, max_tokens=1000, n=1, stop=None) -> list:
messages = [{"role": "user", "content": prompt}]
return chatgpt(messages, model=model, temperature=temperature, max_tokens=max_tokens, n=n, stop=stop)
def chatgpt(messages, model="gpt-4", temperature=0.7, max_tokens=1000, n=1, stop=None) -> list:
global completion_tokens, prompt_tokens
outputs = []
while n > 0:
cnt = min(n, 20)
n -= cnt
res = completions_with_backoff(model=model, messages=messages, temperature=temperature, max_tokens=max_tokens, n=cnt, stop=stop)
outputs.extend([choice["message"]["content"] for choice in res["choices"]])
# log completion tokens
completion_tokens += res["usage"]["completion_tokens"]
prompt_tokens += res["usage"]["prompt_tokens"]
return outputs
def gpt_usage(backend="gpt-4"):
global completion_tokens, prompt_tokens
if backend == "gpt-4":
cost = completion_tokens / 1000 * 0.06 + prompt_tokens / 1000 * 0.03
elif backend == "gpt-3.5-turbo":
cost = (completion_tokens + prompt_tokens) / 1000 * 0.0002
return {"completion_tokens": completion_tokens, "prompt_tokens": prompt_tokens, "cost": cost}