open-webui/Dockerfile
Jannik Streidl fdef2abdfb cuda fix
2024-03-22 12:48:48 +01:00

134 lines
5.7 KiB
Docker

# syntax=docker/dockerfile:1
# Initialize device type args
# use build args in the docker build commmand with --build-arg="BUILDARG=true"
ARG USE_CUDA=false
ARG USE_MPS=false
ARG INCLUDE_OLLAMA=false
######## WebUI frontend ########
FROM node:21-alpine3.19 as build
WORKDIR /app
#RUN apt-get update \
# && apt-get install -y --no-install-recommends wget \
# # cleanup
# && rm -rf /var/lib/apt/lists/*
# wget embedding model weight from alpine (does not exist from slim-buster)
#RUN wget "https://chroma-onnx-models.s3.amazonaws.com/all-MiniLM-L6-v2/onnx.tar.gz" -O - | \
# tar -xzf - -C /app
COPY package.json package-lock.json ./
RUN npm ci
COPY . .
RUN npm run build
######## WebUI backend ########
FROM python:3.11-slim-bookworm as base
# Use args
ARG USE_CUDA
ARG USE_MPS
ARG INCLUDE_OLLAMA
## Basis ##
ENV ENV=prod \
PORT=8080 \
# pass build args to the build
INCLUDE_OLLAMA_DOCKER=${INCLUDE_OLLAMA} \
USE_MPS_DOCKER=${USE_MPS} \
USE_CUDA_DOCKER=${USE_CUDA}
## Basis URL Config ##
ENV OLLAMA_BASE_URL="/ollama" \
OPENAI_API_BASE_URL=""
## API Key and Security Config ##
ENV OPENAI_API_KEY="" \
WEBUI_SECRET_KEY="" \
SCARF_NO_ANALYTICS=true \
DO_NOT_TRACK=true
#### Preloaded models #########################################################
## whisper TTS Settings ##
ENV WHISPER_MODEL="base" \
WHISPER_MODEL_DIR="/app/backend/data/cache/whisper/models"
## RAG Embedding Model Settings ##
# any sentence transformer model; models to use can be found at https://huggingface.co/models?library=sentence-transformers
# Leaderboard: https://huggingface.co/spaces/mteb/leaderboard
# for better performance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB)
# IMPORTANT: If you change the default model (all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them.
ENV RAG_EMBEDDING_MODEL="all-MiniLM-L6-v2" \
RAG_EMBEDDING_MODEL_DIR="/app/backend/data/cache/embedding/models" \
SENTENCE_TRANSFORMERS_HOME="/app/backend/data/cache/embedding/models" \
# device type for whisper tts and embbeding models - "cpu" (default) or "mps" (apple silicon) - choosing this right can lead to better performance
# Important:
# If you want to use CUDA you need to install the nvidia-container-toolkit (https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
# you can set this to "cuda" but its recomended to use --build-arg CUDA_ENABLED=true flag when building the image
# RAG_EMBEDDING_MODEL_DEVICE_TYPE="cpu" \
DEVICE_COMPUTE_TYPE="int8"
# device type for whisper tts and embbeding models - "cpu" (default), "cuda" (nvidia gpu and CUDA required) or "mps" (apple silicon) - choosing this right can lead to better performance
#### Preloaded models ##########################################################
WORKDIR /app/backend
# install python dependencies
COPY ./backend/requirements.txt ./requirements.txt
RUN if [ "$USE_CUDA" = "true" ]; then \
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117 --no-cache-dir && \
pip3 install -r requirements.txt --no-cache-dir; \
elif [ "$USE_MPS" = "true" ]; then \
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && \
pip3 install -r requirements.txt --no-cache-dir && \
python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])" && \
python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device='mps')"; \
else \
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && \
pip3 install -r requirements.txt --no-cache-dir && \
python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])" && \
python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device='cpu')"; \
fi
RUN if [ "$INCLUDE_OLLAMA" = "true" ]; then \
apt-get update && \
# Install pandoc and netcat
apt-get install -y --no-install-recommends pandoc netcat-openbsd && \
# for RAG OCR
apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && \
# install helper tools
apt-get install -y --no-install-recommends curl && \
# install ollama
curl -fsSL https://ollama.com/install.sh | sh && \
# cleanup
rm -rf /var/lib/apt/lists/*; \
else \
apt-get update && \
# Install pandoc and netcat
apt-get install -y --no-install-recommends pandoc netcat-openbsd && \
# for RAG OCR
apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && \
# cleanup
rm -rf /var/lib/apt/lists/*; \
fi
# copy embedding weight from build
# RUN mkdir -p /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2
# COPY --from=build /app/onnx /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2/onnx
# copy built frontend files
COPY --from=build /app/build /app/build
COPY --from=build /app/CHANGELOG.md /app/CHANGELOG.md
COPY --from=build /app/package.json /app/package.json
# copy backend files
COPY ./backend .
EXPOSE 8080
CMD [ "bash", "start.sh"]