open-webui/backend/open_webui/apps/retrieval/main.py
Timothy J. Baek f2c78ac0fb refac
2024-10-25 22:23:21 -07:00

1333 lines
45 KiB
Python

# TODO: Merge this with the webui_app and make it a single app
import json
import logging
import mimetypes
import os
import shutil
import uuid
from datetime import datetime
from pathlib import Path
from typing import Iterator, Optional, Sequence, Union
from fastapi import Depends, FastAPI, File, Form, HTTPException, UploadFile, status
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import tiktoken
from open_webui.storage.provider import Storage
from open_webui.apps.webui.models.knowledge import Knowledges
from open_webui.apps.retrieval.vector.connector import VECTOR_DB_CLIENT
# Document loaders
from open_webui.apps.retrieval.loaders.main import Loader
# Web search engines
from open_webui.apps.retrieval.web.main import SearchResult
from open_webui.apps.retrieval.web.utils import get_web_loader
from open_webui.apps.retrieval.web.brave import search_brave
from open_webui.apps.retrieval.web.duckduckgo import search_duckduckgo
from open_webui.apps.retrieval.web.google_pse import search_google_pse
from open_webui.apps.retrieval.web.jina_search import search_jina
from open_webui.apps.retrieval.web.searchapi import search_searchapi
from open_webui.apps.retrieval.web.searxng import search_searxng
from open_webui.apps.retrieval.web.serper import search_serper
from open_webui.apps.retrieval.web.serply import search_serply
from open_webui.apps.retrieval.web.serpstack import search_serpstack
from open_webui.apps.retrieval.web.tavily import search_tavily
from open_webui.apps.retrieval.utils import (
get_embedding_function,
get_model_path,
query_collection,
query_collection_with_hybrid_search,
query_doc,
query_doc_with_hybrid_search,
)
from open_webui.apps.webui.models.files import Files
from open_webui.config import (
BRAVE_SEARCH_API_KEY,
TIKTOKEN_ENCODING_NAME,
RAG_TEXT_SPLITTER,
CHUNK_OVERLAP,
CHUNK_SIZE,
CONTENT_EXTRACTION_ENGINE,
CORS_ALLOW_ORIGIN,
ENABLE_RAG_HYBRID_SEARCH,
ENABLE_RAG_LOCAL_WEB_FETCH,
ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
ENABLE_RAG_WEB_SEARCH,
ENV,
GOOGLE_PSE_API_KEY,
GOOGLE_PSE_ENGINE_ID,
PDF_EXTRACT_IMAGES,
RAG_EMBEDDING_ENGINE,
RAG_EMBEDDING_MODEL,
RAG_EMBEDDING_MODEL_AUTO_UPDATE,
RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
RAG_EMBEDDING_BATCH_SIZE,
RAG_FILE_MAX_COUNT,
RAG_FILE_MAX_SIZE,
RAG_OPENAI_API_BASE_URL,
RAG_OPENAI_API_KEY,
RAG_RELEVANCE_THRESHOLD,
RAG_RERANKING_MODEL,
RAG_RERANKING_MODEL_AUTO_UPDATE,
RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
DEFAULT_RAG_TEMPLATE,
RAG_TEMPLATE,
RAG_TOP_K,
RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
RAG_WEB_SEARCH_ENGINE,
RAG_WEB_SEARCH_RESULT_COUNT,
SEARCHAPI_API_KEY,
SEARCHAPI_ENGINE,
SEARXNG_QUERY_URL,
SERPER_API_KEY,
SERPLY_API_KEY,
SERPSTACK_API_KEY,
SERPSTACK_HTTPS,
TAVILY_API_KEY,
TIKA_SERVER_URL,
UPLOAD_DIR,
YOUTUBE_LOADER_LANGUAGE,
AppConfig,
)
from open_webui.constants import ERROR_MESSAGES
from open_webui.env import SRC_LOG_LEVELS, DEVICE_TYPE, DOCKER
from open_webui.utils.misc import (
calculate_sha256,
calculate_sha256_string,
extract_folders_after_data_docs,
sanitize_filename,
)
from open_webui.utils.utils import get_admin_user, get_verified_user
from langchain.text_splitter import RecursiveCharacterTextSplitter, TokenTextSplitter
from langchain_community.document_loaders import (
YoutubeLoader,
)
from langchain_core.documents import Document
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
app = FastAPI()
app.state.config = AppConfig()
app.state.config.TOP_K = RAG_TOP_K
app.state.config.RELEVANCE_THRESHOLD = RAG_RELEVANCE_THRESHOLD
app.state.config.FILE_MAX_SIZE = RAG_FILE_MAX_SIZE
app.state.config.FILE_MAX_COUNT = RAG_FILE_MAX_COUNT
app.state.config.ENABLE_RAG_HYBRID_SEARCH = ENABLE_RAG_HYBRID_SEARCH
app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION = (
ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION
)
app.state.config.CONTENT_EXTRACTION_ENGINE = CONTENT_EXTRACTION_ENGINE
app.state.config.TIKA_SERVER_URL = TIKA_SERVER_URL
app.state.config.TEXT_SPLITTER = RAG_TEXT_SPLITTER
app.state.config.TIKTOKEN_ENCODING_NAME = TIKTOKEN_ENCODING_NAME
app.state.config.CHUNK_SIZE = CHUNK_SIZE
app.state.config.CHUNK_OVERLAP = CHUNK_OVERLAP
app.state.config.RAG_EMBEDDING_ENGINE = RAG_EMBEDDING_ENGINE
app.state.config.RAG_EMBEDDING_MODEL = RAG_EMBEDDING_MODEL
app.state.config.RAG_EMBEDDING_BATCH_SIZE = RAG_EMBEDDING_BATCH_SIZE
app.state.config.RAG_RERANKING_MODEL = RAG_RERANKING_MODEL
app.state.config.RAG_TEMPLATE = RAG_TEMPLATE
app.state.config.OPENAI_API_BASE_URL = RAG_OPENAI_API_BASE_URL
app.state.config.OPENAI_API_KEY = RAG_OPENAI_API_KEY
app.state.config.PDF_EXTRACT_IMAGES = PDF_EXTRACT_IMAGES
app.state.config.YOUTUBE_LOADER_LANGUAGE = YOUTUBE_LOADER_LANGUAGE
app.state.YOUTUBE_LOADER_TRANSLATION = None
app.state.config.ENABLE_RAG_WEB_SEARCH = ENABLE_RAG_WEB_SEARCH
app.state.config.RAG_WEB_SEARCH_ENGINE = RAG_WEB_SEARCH_ENGINE
app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST = RAG_WEB_SEARCH_DOMAIN_FILTER_LIST
app.state.config.SEARXNG_QUERY_URL = SEARXNG_QUERY_URL
app.state.config.GOOGLE_PSE_API_KEY = GOOGLE_PSE_API_KEY
app.state.config.GOOGLE_PSE_ENGINE_ID = GOOGLE_PSE_ENGINE_ID
app.state.config.BRAVE_SEARCH_API_KEY = BRAVE_SEARCH_API_KEY
app.state.config.SERPSTACK_API_KEY = SERPSTACK_API_KEY
app.state.config.SERPSTACK_HTTPS = SERPSTACK_HTTPS
app.state.config.SERPER_API_KEY = SERPER_API_KEY
app.state.config.SERPLY_API_KEY = SERPLY_API_KEY
app.state.config.TAVILY_API_KEY = TAVILY_API_KEY
app.state.config.SEARCHAPI_API_KEY = SEARCHAPI_API_KEY
app.state.config.SEARCHAPI_ENGINE = SEARCHAPI_ENGINE
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT = RAG_WEB_SEARCH_RESULT_COUNT
app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS = RAG_WEB_SEARCH_CONCURRENT_REQUESTS
def update_embedding_model(
embedding_model: str,
auto_update: bool = False,
):
if embedding_model and app.state.config.RAG_EMBEDDING_ENGINE == "":
from sentence_transformers import SentenceTransformer
app.state.sentence_transformer_ef = SentenceTransformer(
get_model_path(embedding_model, auto_update),
device=DEVICE_TYPE,
trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
)
else:
app.state.sentence_transformer_ef = None
def update_reranking_model(
reranking_model: str,
auto_update: bool = False,
):
if reranking_model:
if any(model in reranking_model for model in ["jinaai/jina-colbert-v2"]):
try:
from open_webui.apps.retrieval.models.colbert import ColBERT
app.state.sentence_transformer_rf = ColBERT(
get_model_path(reranking_model, auto_update),
env="docker" if DOCKER else None,
)
except Exception as e:
log.error(f"ColBERT: {e}")
app.state.sentence_transformer_rf = None
app.state.config.ENABLE_RAG_HYBRID_SEARCH = False
else:
import sentence_transformers
try:
app.state.sentence_transformer_rf = sentence_transformers.CrossEncoder(
get_model_path(reranking_model, auto_update),
device=DEVICE_TYPE,
trust_remote_code=RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
)
except:
log.error("CrossEncoder error")
app.state.sentence_transformer_rf = None
app.state.config.ENABLE_RAG_HYBRID_SEARCH = False
else:
app.state.sentence_transformer_rf = None
update_embedding_model(
app.state.config.RAG_EMBEDDING_MODEL,
RAG_EMBEDDING_MODEL_AUTO_UPDATE,
)
update_reranking_model(
app.state.config.RAG_RERANKING_MODEL,
RAG_RERANKING_MODEL_AUTO_UPDATE,
)
app.state.EMBEDDING_FUNCTION = get_embedding_function(
app.state.config.RAG_EMBEDDING_ENGINE,
app.state.config.RAG_EMBEDDING_MODEL,
app.state.sentence_transformer_ef,
app.state.config.OPENAI_API_KEY,
app.state.config.OPENAI_API_BASE_URL,
app.state.config.RAG_EMBEDDING_BATCH_SIZE,
)
app.add_middleware(
CORSMiddleware,
allow_origins=CORS_ALLOW_ORIGIN,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class CollectionNameForm(BaseModel):
collection_name: Optional[str] = None
class ProcessUrlForm(CollectionNameForm):
url: str
class SearchForm(CollectionNameForm):
query: str
@app.get("/")
async def get_status():
return {
"status": True,
"chunk_size": app.state.config.CHUNK_SIZE,
"chunk_overlap": app.state.config.CHUNK_OVERLAP,
"template": app.state.config.RAG_TEMPLATE,
"embedding_engine": app.state.config.RAG_EMBEDDING_ENGINE,
"embedding_model": app.state.config.RAG_EMBEDDING_MODEL,
"reranking_model": app.state.config.RAG_RERANKING_MODEL,
"embedding_batch_size": app.state.config.RAG_EMBEDDING_BATCH_SIZE,
}
@app.get("/embedding")
async def get_embedding_config(user=Depends(get_admin_user)):
return {
"status": True,
"embedding_engine": app.state.config.RAG_EMBEDDING_ENGINE,
"embedding_model": app.state.config.RAG_EMBEDDING_MODEL,
"embedding_batch_size": app.state.config.RAG_EMBEDDING_BATCH_SIZE,
"openai_config": {
"url": app.state.config.OPENAI_API_BASE_URL,
"key": app.state.config.OPENAI_API_KEY,
},
}
@app.get("/reranking")
async def get_reraanking_config(user=Depends(get_admin_user)):
return {
"status": True,
"reranking_model": app.state.config.RAG_RERANKING_MODEL,
}
class OpenAIConfigForm(BaseModel):
url: str
key: str
class EmbeddingModelUpdateForm(BaseModel):
openai_config: Optional[OpenAIConfigForm] = None
embedding_engine: str
embedding_model: str
embedding_batch_size: Optional[int] = 1
@app.post("/embedding/update")
async def update_embedding_config(
form_data: EmbeddingModelUpdateForm, user=Depends(get_admin_user)
):
log.info(
f"Updating embedding model: {app.state.config.RAG_EMBEDDING_MODEL} to {form_data.embedding_model}"
)
try:
app.state.config.RAG_EMBEDDING_ENGINE = form_data.embedding_engine
app.state.config.RAG_EMBEDDING_MODEL = form_data.embedding_model
if app.state.config.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]:
if form_data.openai_config is not None:
app.state.config.OPENAI_API_BASE_URL = form_data.openai_config.url
app.state.config.OPENAI_API_KEY = form_data.openai_config.key
app.state.config.RAG_EMBEDDING_BATCH_SIZE = form_data.embedding_batch_size
update_embedding_model(app.state.config.RAG_EMBEDDING_MODEL)
app.state.EMBEDDING_FUNCTION = get_embedding_function(
app.state.config.RAG_EMBEDDING_ENGINE,
app.state.config.RAG_EMBEDDING_MODEL,
app.state.sentence_transformer_ef,
app.state.config.OPENAI_API_KEY,
app.state.config.OPENAI_API_BASE_URL,
app.state.config.RAG_EMBEDDING_BATCH_SIZE,
)
return {
"status": True,
"embedding_engine": app.state.config.RAG_EMBEDDING_ENGINE,
"embedding_model": app.state.config.RAG_EMBEDDING_MODEL,
"embedding_batch_size": app.state.config.RAG_EMBEDDING_BATCH_SIZE,
"openai_config": {
"url": app.state.config.OPENAI_API_BASE_URL,
"key": app.state.config.OPENAI_API_KEY,
},
}
except Exception as e:
log.exception(f"Problem updating embedding model: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=ERROR_MESSAGES.DEFAULT(e),
)
class RerankingModelUpdateForm(BaseModel):
reranking_model: str
@app.post("/reranking/update")
async def update_reranking_config(
form_data: RerankingModelUpdateForm, user=Depends(get_admin_user)
):
log.info(
f"Updating reranking model: {app.state.config.RAG_RERANKING_MODEL} to {form_data.reranking_model}"
)
try:
app.state.config.RAG_RERANKING_MODEL = form_data.reranking_model
update_reranking_model(app.state.config.RAG_RERANKING_MODEL, True)
return {
"status": True,
"reranking_model": app.state.config.RAG_RERANKING_MODEL,
}
except Exception as e:
log.exception(f"Problem updating reranking model: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=ERROR_MESSAGES.DEFAULT(e),
)
@app.get("/config")
async def get_rag_config(user=Depends(get_admin_user)):
return {
"status": True,
"pdf_extract_images": app.state.config.PDF_EXTRACT_IMAGES,
"content_extraction": {
"engine": app.state.config.CONTENT_EXTRACTION_ENGINE,
"tika_server_url": app.state.config.TIKA_SERVER_URL,
},
"chunk": {
"text_splitter": app.state.config.TEXT_SPLITTER,
"chunk_size": app.state.config.CHUNK_SIZE,
"chunk_overlap": app.state.config.CHUNK_OVERLAP,
},
"file": {
"max_size": app.state.config.FILE_MAX_SIZE,
"max_count": app.state.config.FILE_MAX_COUNT,
},
"youtube": {
"language": app.state.config.YOUTUBE_LOADER_LANGUAGE,
"translation": app.state.YOUTUBE_LOADER_TRANSLATION,
},
"web": {
"ssl_verification": app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
"search": {
"enabled": app.state.config.ENABLE_RAG_WEB_SEARCH,
"engine": app.state.config.RAG_WEB_SEARCH_ENGINE,
"searxng_query_url": app.state.config.SEARXNG_QUERY_URL,
"google_pse_api_key": app.state.config.GOOGLE_PSE_API_KEY,
"google_pse_engine_id": app.state.config.GOOGLE_PSE_ENGINE_ID,
"brave_search_api_key": app.state.config.BRAVE_SEARCH_API_KEY,
"serpstack_api_key": app.state.config.SERPSTACK_API_KEY,
"serpstack_https": app.state.config.SERPSTACK_HTTPS,
"serper_api_key": app.state.config.SERPER_API_KEY,
"serply_api_key": app.state.config.SERPLY_API_KEY,
"tavily_api_key": app.state.config.TAVILY_API_KEY,
"searchapi_api_key": app.state.config.SEARCHAPI_API_KEY,
"seaarchapi_engine": app.state.config.SEARCHAPI_ENGINE,
"result_count": app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
"concurrent_requests": app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
},
},
}
class FileConfig(BaseModel):
max_size: Optional[int] = None
max_count: Optional[int] = None
class ContentExtractionConfig(BaseModel):
engine: str = ""
tika_server_url: Optional[str] = None
class ChunkParamUpdateForm(BaseModel):
text_splitter: Optional[str] = None
chunk_size: int
chunk_overlap: int
class YoutubeLoaderConfig(BaseModel):
language: list[str]
translation: Optional[str] = None
class WebSearchConfig(BaseModel):
enabled: bool
engine: Optional[str] = None
searxng_query_url: Optional[str] = None
google_pse_api_key: Optional[str] = None
google_pse_engine_id: Optional[str] = None
brave_search_api_key: Optional[str] = None
serpstack_api_key: Optional[str] = None
serpstack_https: Optional[bool] = None
serper_api_key: Optional[str] = None
serply_api_key: Optional[str] = None
tavily_api_key: Optional[str] = None
searchapi_api_key: Optional[str] = None
searchapi_engine: Optional[str] = None
result_count: Optional[int] = None
concurrent_requests: Optional[int] = None
class WebConfig(BaseModel):
search: WebSearchConfig
web_loader_ssl_verification: Optional[bool] = None
class ConfigUpdateForm(BaseModel):
pdf_extract_images: Optional[bool] = None
file: Optional[FileConfig] = None
content_extraction: Optional[ContentExtractionConfig] = None
chunk: Optional[ChunkParamUpdateForm] = None
youtube: Optional[YoutubeLoaderConfig] = None
web: Optional[WebConfig] = None
@app.post("/config/update")
async def update_rag_config(form_data: ConfigUpdateForm, user=Depends(get_admin_user)):
app.state.config.PDF_EXTRACT_IMAGES = (
form_data.pdf_extract_images
if form_data.pdf_extract_images is not None
else app.state.config.PDF_EXTRACT_IMAGES
)
if form_data.file is not None:
app.state.config.FILE_MAX_SIZE = form_data.file.max_size
app.state.config.FILE_MAX_COUNT = form_data.file.max_count
if form_data.content_extraction is not None:
log.info(f"Updating text settings: {form_data.content_extraction}")
app.state.config.CONTENT_EXTRACTION_ENGINE = form_data.content_extraction.engine
app.state.config.TIKA_SERVER_URL = form_data.content_extraction.tika_server_url
if form_data.chunk is not None:
app.state.config.TEXT_SPLITTER = form_data.chunk.text_splitter
app.state.config.CHUNK_SIZE = form_data.chunk.chunk_size
app.state.config.CHUNK_OVERLAP = form_data.chunk.chunk_overlap
if form_data.youtube is not None:
app.state.config.YOUTUBE_LOADER_LANGUAGE = form_data.youtube.language
app.state.YOUTUBE_LOADER_TRANSLATION = form_data.youtube.translation
if form_data.web is not None:
app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION = (
form_data.web.web_loader_ssl_verification
)
app.state.config.ENABLE_RAG_WEB_SEARCH = form_data.web.search.enabled
app.state.config.RAG_WEB_SEARCH_ENGINE = form_data.web.search.engine
app.state.config.SEARXNG_QUERY_URL = form_data.web.search.searxng_query_url
app.state.config.GOOGLE_PSE_API_KEY = form_data.web.search.google_pse_api_key
app.state.config.GOOGLE_PSE_ENGINE_ID = (
form_data.web.search.google_pse_engine_id
)
app.state.config.BRAVE_SEARCH_API_KEY = (
form_data.web.search.brave_search_api_key
)
app.state.config.SERPSTACK_API_KEY = form_data.web.search.serpstack_api_key
app.state.config.SERPSTACK_HTTPS = form_data.web.search.serpstack_https
app.state.config.SERPER_API_KEY = form_data.web.search.serper_api_key
app.state.config.SERPLY_API_KEY = form_data.web.search.serply_api_key
app.state.config.TAVILY_API_KEY = form_data.web.search.tavily_api_key
app.state.config.SEARCHAPI_API_KEY = form_data.web.search.searchapi_api_key
app.state.config.SEARCHAPI_ENGINE = form_data.web.search.searchapi_engine
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT = form_data.web.search.result_count
app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS = (
form_data.web.search.concurrent_requests
)
return {
"status": True,
"pdf_extract_images": app.state.config.PDF_EXTRACT_IMAGES,
"file": {
"max_size": app.state.config.FILE_MAX_SIZE,
"max_count": app.state.config.FILE_MAX_COUNT,
},
"content_extraction": {
"engine": app.state.config.CONTENT_EXTRACTION_ENGINE,
"tika_server_url": app.state.config.TIKA_SERVER_URL,
},
"chunk": {
"text_splitter": app.state.config.TEXT_SPLITTER,
"chunk_size": app.state.config.CHUNK_SIZE,
"chunk_overlap": app.state.config.CHUNK_OVERLAP,
},
"youtube": {
"language": app.state.config.YOUTUBE_LOADER_LANGUAGE,
"translation": app.state.YOUTUBE_LOADER_TRANSLATION,
},
"web": {
"ssl_verification": app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
"search": {
"enabled": app.state.config.ENABLE_RAG_WEB_SEARCH,
"engine": app.state.config.RAG_WEB_SEARCH_ENGINE,
"searxng_query_url": app.state.config.SEARXNG_QUERY_URL,
"google_pse_api_key": app.state.config.GOOGLE_PSE_API_KEY,
"google_pse_engine_id": app.state.config.GOOGLE_PSE_ENGINE_ID,
"brave_search_api_key": app.state.config.BRAVE_SEARCH_API_KEY,
"serpstack_api_key": app.state.config.SERPSTACK_API_KEY,
"serpstack_https": app.state.config.SERPSTACK_HTTPS,
"serper_api_key": app.state.config.SERPER_API_KEY,
"serply_api_key": app.state.config.SERPLY_API_KEY,
"serachapi_api_key": app.state.config.SEARCHAPI_API_KEY,
"searchapi_engine": app.state.config.SEARCHAPI_ENGINE,
"tavily_api_key": app.state.config.TAVILY_API_KEY,
"result_count": app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
"concurrent_requests": app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
},
},
}
@app.get("/template")
async def get_rag_template(user=Depends(get_verified_user)):
return {
"status": True,
"template": app.state.config.RAG_TEMPLATE,
}
@app.get("/query/settings")
async def get_query_settings(user=Depends(get_admin_user)):
return {
"status": True,
"template": app.state.config.RAG_TEMPLATE,
"k": app.state.config.TOP_K,
"r": app.state.config.RELEVANCE_THRESHOLD,
"hybrid": app.state.config.ENABLE_RAG_HYBRID_SEARCH,
}
class QuerySettingsForm(BaseModel):
k: Optional[int] = None
r: Optional[float] = None
template: Optional[str] = None
hybrid: Optional[bool] = None
@app.post("/query/settings/update")
async def update_query_settings(
form_data: QuerySettingsForm, user=Depends(get_admin_user)
):
app.state.config.RAG_TEMPLATE = form_data.template
app.state.config.TOP_K = form_data.k if form_data.k else 4
app.state.config.RELEVANCE_THRESHOLD = form_data.r if form_data.r else 0.0
app.state.config.ENABLE_RAG_HYBRID_SEARCH = (
form_data.hybrid if form_data.hybrid else False
)
return {
"status": True,
"template": app.state.config.RAG_TEMPLATE,
"k": app.state.config.TOP_K,
"r": app.state.config.RELEVANCE_THRESHOLD,
"hybrid": app.state.config.ENABLE_RAG_HYBRID_SEARCH,
}
####################################
#
# Document process and retrieval
#
####################################
def save_docs_to_vector_db(
docs,
collection_name,
metadata: Optional[dict] = None,
overwrite: bool = False,
split: bool = True,
add: bool = False,
) -> bool:
log.info(f"save_docs_to_vector_db {docs} {collection_name}")
# Check if entries with the same hash (metadata.hash) already exist
if metadata and "hash" in metadata:
result = VECTOR_DB_CLIENT.query(
collection_name=collection_name,
filter={"hash": metadata["hash"]},
)
if result is not None:
existing_doc_ids = result.ids[0]
if existing_doc_ids:
log.info(f"Document with hash {metadata['hash']} already exists")
raise ValueError(ERROR_MESSAGES.DUPLICATE_CONTENT)
if split:
if app.state.config.TEXT_SPLITTER in ["", "character"]:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=app.state.config.CHUNK_SIZE,
chunk_overlap=app.state.config.CHUNK_OVERLAP,
add_start_index=True,
)
elif app.state.config.TEXT_SPLITTER == "token":
log.info(
f"Using token text splitter: {app.state.config.TIKTOKEN_ENCODING_NAME}"
)
tiktoken.get_encoding(str(app.state.config.TIKTOKEN_ENCODING_NAME))
text_splitter = TokenTextSplitter(
encoding_name=str(app.state.config.TIKTOKEN_ENCODING_NAME),
chunk_size=app.state.config.CHUNK_SIZE,
chunk_overlap=app.state.config.CHUNK_OVERLAP,
add_start_index=True,
)
else:
raise ValueError(ERROR_MESSAGES.DEFAULT("Invalid text splitter"))
docs = text_splitter.split_documents(docs)
if len(docs) == 0:
raise ValueError(ERROR_MESSAGES.EMPTY_CONTENT)
texts = [doc.page_content for doc in docs]
metadatas = [
{
**doc.metadata,
**(metadata if metadata else {}),
"embedding_config": json.dumps(
{
"engine": app.state.config.RAG_EMBEDDING_ENGINE,
"model": app.state.config.RAG_EMBEDDING_MODEL,
}
),
}
for doc in docs
]
# ChromaDB does not like datetime formats
# for meta-data so convert them to string.
for metadata in metadatas:
for key, value in metadata.items():
if isinstance(value, datetime):
metadata[key] = str(value)
try:
if VECTOR_DB_CLIENT.has_collection(collection_name=collection_name):
log.info(f"collection {collection_name} already exists")
if overwrite:
VECTOR_DB_CLIENT.delete_collection(collection_name=collection_name)
log.info(f"deleting existing collection {collection_name}")
elif add is False:
log.info(
f"collection {collection_name} already exists, overwrite is False and add is False"
)
return True
log.info(f"adding to collection {collection_name}")
embedding_function = get_embedding_function(
app.state.config.RAG_EMBEDDING_ENGINE,
app.state.config.RAG_EMBEDDING_MODEL,
app.state.sentence_transformer_ef,
app.state.config.OPENAI_API_KEY,
app.state.config.OPENAI_API_BASE_URL,
app.state.config.RAG_EMBEDDING_BATCH_SIZE,
)
embeddings = embedding_function(
list(map(lambda x: x.replace("\n", " "), texts))
)
items = [
{
"id": str(uuid.uuid4()),
"text": text,
"vector": embeddings[idx],
"metadata": metadatas[idx],
}
for idx, text in enumerate(texts)
]
VECTOR_DB_CLIENT.insert(
collection_name=collection_name,
items=items,
)
return True
except Exception as e:
log.exception(e)
return False
class ProcessFileForm(BaseModel):
file_id: str
content: Optional[str] = None
collection_name: Optional[str] = None
@app.post("/process/file")
def process_file(
form_data: ProcessFileForm,
user=Depends(get_verified_user),
):
try:
file = Files.get_file_by_id(form_data.file_id)
collection_name = form_data.collection_name
if collection_name is None:
collection_name = f"file-{file.id}"
if form_data.content:
# Update the content in the file
# Usage: /files/{file_id}/data/content/update
VECTOR_DB_CLIENT.delete(
collection_name=f"file-{file.id}",
filter={"file_id": file.id},
)
docs = [
Document(
page_content=form_data.content,
metadata={
"name": file.meta.get("name", file.filename),
"created_by": file.user_id,
"file_id": file.id,
**file.meta,
},
)
]
text_content = form_data.content
elif form_data.collection_name:
# Check if the file has already been processed and save the content
# Usage: /knowledge/{id}/file/add, /knowledge/{id}/file/update
result = VECTOR_DB_CLIENT.query(
collection_name=f"file-{file.id}", filter={"file_id": file.id}
)
if result is not None and len(result.ids[0]) > 0:
docs = [
Document(
page_content=result.documents[0][idx],
metadata=result.metadatas[0][idx],
)
for idx, id in enumerate(result.ids[0])
]
else:
docs = [
Document(
page_content=file.data.get("content", ""),
metadata={
"name": file.meta.get("name", file.filename),
"created_by": file.user_id,
"file_id": file.id,
**file.meta,
},
)
]
text_content = file.data.get("content", "")
else:
# Process the file and save the content
# Usage: /files/
file_path = file.path
if file_path:
file_path = Storage.get_file(file_path)
loader = Loader(
engine=app.state.config.CONTENT_EXTRACTION_ENGINE,
TIKA_SERVER_URL=app.state.config.TIKA_SERVER_URL,
PDF_EXTRACT_IMAGES=app.state.config.PDF_EXTRACT_IMAGES,
)
docs = loader.load(
file.filename, file.meta.get("content_type"), file_path
)
else:
docs = [
Document(
page_content=file.data.get("content", ""),
metadata={
"name": file.filename,
"created_by": file.user_id,
"file_id": file.id,
**file.meta,
},
)
]
text_content = " ".join([doc.page_content for doc in docs])
log.debug(f"text_content: {text_content}")
Files.update_file_data_by_id(
file.id,
{"content": text_content},
)
hash = calculate_sha256_string(text_content)
Files.update_file_hash_by_id(file.id, hash)
try:
result = save_docs_to_vector_db(
docs=docs,
collection_name=collection_name,
metadata={
"file_id": file.id,
"name": file.meta.get("name", file.filename),
"hash": hash,
},
add=(True if form_data.collection_name else False),
)
if result:
Files.update_file_metadata_by_id(
file.id,
{
"collection_name": collection_name,
},
)
return {
"status": True,
"collection_name": collection_name,
"filename": file.meta.get("name", file.filename),
"content": text_content,
}
except Exception as e:
raise e
except Exception as e:
log.exception(e)
if "No pandoc was found" in str(e):
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED,
)
else:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=str(e),
)
class ProcessTextForm(BaseModel):
name: str
content: str
collection_name: Optional[str] = None
@app.post("/process/text")
def process_text(
form_data: ProcessTextForm,
user=Depends(get_verified_user),
):
collection_name = form_data.collection_name
if collection_name is None:
collection_name = calculate_sha256_string(form_data.content)
docs = [
Document(
page_content=form_data.content,
metadata={"name": form_data.name, "created_by": user.id},
)
]
text_content = form_data.content
log.debug(f"text_content: {text_content}")
result = save_docs_to_vector_db(docs, collection_name)
if result:
return {
"status": True,
"collection_name": collection_name,
"content": text_content,
}
else:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=ERROR_MESSAGES.DEFAULT(),
)
@app.post("/process/youtube")
def process_youtube_video(form_data: ProcessUrlForm, user=Depends(get_verified_user)):
try:
collection_name = form_data.collection_name
if not collection_name:
collection_name = calculate_sha256_string(form_data.url)[:63]
loader = YoutubeLoader.from_youtube_url(
form_data.url,
add_video_info=True,
language=app.state.config.YOUTUBE_LOADER_LANGUAGE,
translation=app.state.YOUTUBE_LOADER_TRANSLATION,
)
docs = loader.load()
content = " ".join([doc.page_content for doc in docs])
log.debug(f"text_content: {content}")
save_docs_to_vector_db(docs, collection_name, overwrite=True)
return {
"status": True,
"collection_name": collection_name,
"filename": form_data.url,
"file": {
"data": {
"content": content,
},
"meta": {
"name": form_data.url,
},
},
}
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
@app.post("/process/web")
def process_web(form_data: ProcessUrlForm, user=Depends(get_verified_user)):
try:
collection_name = form_data.collection_name
if not collection_name:
collection_name = calculate_sha256_string(form_data.url)[:63]
loader = get_web_loader(
form_data.url,
verify_ssl=app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
requests_per_second=app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
)
docs = loader.load()
content = " ".join([doc.page_content for doc in docs])
log.debug(f"text_content: {content}")
save_docs_to_vector_db(docs, collection_name, overwrite=True)
return {
"status": True,
"collection_name": collection_name,
"filename": form_data.url,
"file": {
"data": {
"content": content,
},
"meta": {
"name": form_data.url,
},
},
}
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
def search_web(engine: str, query: str) -> list[SearchResult]:
"""Search the web using a search engine and return the results as a list of SearchResult objects.
Will look for a search engine API key in environment variables in the following order:
- SEARXNG_QUERY_URL
- GOOGLE_PSE_API_KEY + GOOGLE_PSE_ENGINE_ID
- BRAVE_SEARCH_API_KEY
- SERPSTACK_API_KEY
- SERPER_API_KEY
- SERPLY_API_KEY
- TAVILY_API_KEY
- SEARCHAPI_API_KEY + SEARCHAPI_ENGINE (by default `google`)
Args:
query (str): The query to search for
"""
# TODO: add playwright to search the web
if engine == "searxng":
if app.state.config.SEARXNG_QUERY_URL:
return search_searxng(
app.state.config.SEARXNG_QUERY_URL,
query,
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No SEARXNG_QUERY_URL found in environment variables")
elif engine == "google_pse":
if (
app.state.config.GOOGLE_PSE_API_KEY
and app.state.config.GOOGLE_PSE_ENGINE_ID
):
return search_google_pse(
app.state.config.GOOGLE_PSE_API_KEY,
app.state.config.GOOGLE_PSE_ENGINE_ID,
query,
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception(
"No GOOGLE_PSE_API_KEY or GOOGLE_PSE_ENGINE_ID found in environment variables"
)
elif engine == "brave":
if app.state.config.BRAVE_SEARCH_API_KEY:
return search_brave(
app.state.config.BRAVE_SEARCH_API_KEY,
query,
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No BRAVE_SEARCH_API_KEY found in environment variables")
elif engine == "serpstack":
if app.state.config.SERPSTACK_API_KEY:
return search_serpstack(
app.state.config.SERPSTACK_API_KEY,
query,
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
https_enabled=app.state.config.SERPSTACK_HTTPS,
)
else:
raise Exception("No SERPSTACK_API_KEY found in environment variables")
elif engine == "serper":
if app.state.config.SERPER_API_KEY:
return search_serper(
app.state.config.SERPER_API_KEY,
query,
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No SERPER_API_KEY found in environment variables")
elif engine == "serply":
if app.state.config.SERPLY_API_KEY:
return search_serply(
app.state.config.SERPLY_API_KEY,
query,
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No SERPLY_API_KEY found in environment variables")
elif engine == "duckduckgo":
return search_duckduckgo(
query,
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
)
elif engine == "tavily":
if app.state.config.TAVILY_API_KEY:
return search_tavily(
app.state.config.TAVILY_API_KEY,
query,
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
)
else:
raise Exception("No TAVILY_API_KEY found in environment variables")
elif engine == "searchapi":
if app.state.config.SEARCHAPI_API_KEY:
return search_searchapi(
app.state.config.SEARCHAPI_API_KEY,
app.state.config.SEARCHAPI_ENGINE,
query,
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No SEARCHAPI_API_KEY found in environment variables")
elif engine == "jina":
return search_jina(query, app.state.config.RAG_WEB_SEARCH_RESULT_COUNT)
else:
raise Exception("No search engine API key found in environment variables")
@app.post("/process/web/search")
def process_web_search(form_data: SearchForm, user=Depends(get_verified_user)):
try:
logging.info(
f"trying to web search with {app.state.config.RAG_WEB_SEARCH_ENGINE, form_data.query}"
)
web_results = search_web(
app.state.config.RAG_WEB_SEARCH_ENGINE, form_data.query
)
except Exception as e:
log.exception(e)
print(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.WEB_SEARCH_ERROR(e),
)
try:
collection_name = form_data.collection_name
if collection_name == "":
collection_name = calculate_sha256_string(form_data.query)[:63]
urls = [result.link for result in web_results]
loader = get_web_loader(urls)
docs = loader.load()
save_docs_to_vector_db(docs, collection_name, overwrite=True)
return {
"status": True,
"collection_name": collection_name,
"filenames": urls,
}
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
class QueryDocForm(BaseModel):
collection_name: str
query: str
k: Optional[int] = None
r: Optional[float] = None
hybrid: Optional[bool] = None
@app.post("/query/doc")
def query_doc_handler(
form_data: QueryDocForm,
user=Depends(get_verified_user),
):
try:
if app.state.config.ENABLE_RAG_HYBRID_SEARCH:
return query_doc_with_hybrid_search(
collection_name=form_data.collection_name,
query=form_data.query,
embedding_function=app.state.EMBEDDING_FUNCTION,
k=form_data.k if form_data.k else app.state.config.TOP_K,
reranking_function=app.state.sentence_transformer_rf,
r=(
form_data.r if form_data.r else app.state.config.RELEVANCE_THRESHOLD
),
)
else:
return query_doc(
collection_name=form_data.collection_name,
query=form_data.query,
embedding_function=app.state.EMBEDDING_FUNCTION,
k=form_data.k if form_data.k else app.state.config.TOP_K,
)
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
class QueryCollectionsForm(BaseModel):
collection_names: list[str]
query: str
k: Optional[int] = None
r: Optional[float] = None
hybrid: Optional[bool] = None
@app.post("/query/collection")
def query_collection_handler(
form_data: QueryCollectionsForm,
user=Depends(get_verified_user),
):
try:
if app.state.config.ENABLE_RAG_HYBRID_SEARCH:
return query_collection_with_hybrid_search(
collection_names=form_data.collection_names,
query=form_data.query,
embedding_function=app.state.EMBEDDING_FUNCTION,
k=form_data.k if form_data.k else app.state.config.TOP_K,
reranking_function=app.state.sentence_transformer_rf,
r=(
form_data.r if form_data.r else app.state.config.RELEVANCE_THRESHOLD
),
)
else:
return query_collection(
collection_names=form_data.collection_names,
query=form_data.query,
embedding_function=app.state.EMBEDDING_FUNCTION,
k=form_data.k if form_data.k else app.state.config.TOP_K,
)
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
####################################
#
# Vector DB operations
#
####################################
class DeleteForm(BaseModel):
collection_name: str
file_id: str
@app.post("/delete")
def delete_entries_from_collection(form_data: DeleteForm, user=Depends(get_admin_user)):
try:
if VECTOR_DB_CLIENT.has_collection(collection_name=form_data.collection_name):
file = Files.get_file_by_id(form_data.file_id)
hash = file.hash
VECTOR_DB_CLIENT.delete(
collection_name=form_data.collection_name,
metadata={"hash": hash},
)
return {"status": True}
else:
return {"status": False}
except Exception as e:
log.exception(e)
return {"status": False}
@app.post("/reset/db")
def reset_vector_db(user=Depends(get_admin_user)):
VECTOR_DB_CLIENT.reset()
Knowledges.delete_all_knowledge()
@app.post("/reset/uploads")
def reset_upload_dir(user=Depends(get_admin_user)) -> bool:
folder = f"{UPLOAD_DIR}"
try:
# Check if the directory exists
if os.path.exists(folder):
# Iterate over all the files and directories in the specified directory
for filename in os.listdir(folder):
file_path = os.path.join(folder, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path) # Remove the file or link
elif os.path.isdir(file_path):
shutil.rmtree(file_path) # Remove the directory
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")
else:
print(f"The directory {folder} does not exist")
except Exception as e:
print(f"Failed to process the directory {folder}. Reason: {e}")
return True
if ENV == "dev":
@app.get("/ef")
async def get_embeddings():
return {"result": app.state.EMBEDDING_FUNCTION("hello world")}
@app.get("/ef/{text}")
async def get_embeddings_text(text: str):
return {"result": app.state.EMBEDDING_FUNCTION(text)}