mirror of
https://github.com/open-webui/open-webui
synced 2025-04-07 14:14:50 +00:00
296 lines
10 KiB
Python
296 lines
10 KiB
Python
from elasticsearch import Elasticsearch, BadRequestError
|
|
from typing import Optional
|
|
import ssl
|
|
from elasticsearch.helpers import bulk, scan
|
|
from open_webui.retrieval.vector.main import VectorItem, SearchResult, GetResult
|
|
from open_webui.config import (
|
|
ELASTICSEARCH_URL,
|
|
ELASTICSEARCH_CA_CERTS,
|
|
ELASTICSEARCH_API_KEY,
|
|
ELASTICSEARCH_USERNAME,
|
|
ELASTICSEARCH_PASSWORD,
|
|
ELASTICSEARCH_CLOUD_ID,
|
|
ELASTICSEARCH_INDEX_PREFIX,
|
|
SSL_ASSERT_FINGERPRINT,
|
|
)
|
|
|
|
|
|
class ElasticsearchClient:
|
|
"""
|
|
Important:
|
|
in order to reduce the number of indexes and since the embedding vector length is fixed, we avoid creating
|
|
an index for each file but store it as a text field, while seperating to different index
|
|
baesd on the embedding length.
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.index_prefix = ELASTICSEARCH_INDEX_PREFIX
|
|
self.client = Elasticsearch(
|
|
hosts=[ELASTICSEARCH_URL],
|
|
ca_certs=ELASTICSEARCH_CA_CERTS,
|
|
api_key=ELASTICSEARCH_API_KEY,
|
|
cloud_id=ELASTICSEARCH_CLOUD_ID,
|
|
basic_auth=(
|
|
(ELASTICSEARCH_USERNAME, ELASTICSEARCH_PASSWORD)
|
|
if ELASTICSEARCH_USERNAME and ELASTICSEARCH_PASSWORD
|
|
else None
|
|
),
|
|
ssl_assert_fingerprint=SSL_ASSERT_FINGERPRINT,
|
|
)
|
|
|
|
# Status: works
|
|
def _get_index_name(self, dimension: int) -> str:
|
|
return f"{self.index_prefix}_d{str(dimension)}"
|
|
|
|
# Status: works
|
|
def _scan_result_to_get_result(self, result) -> GetResult:
|
|
if not result:
|
|
return None
|
|
ids = []
|
|
documents = []
|
|
metadatas = []
|
|
|
|
for hit in result:
|
|
ids.append(hit["_id"])
|
|
documents.append(hit["_source"].get("text"))
|
|
metadatas.append(hit["_source"].get("metadata"))
|
|
|
|
return GetResult(ids=[ids], documents=[documents], metadatas=[metadatas])
|
|
|
|
# Status: works
|
|
def _result_to_get_result(self, result) -> GetResult:
|
|
if not result["hits"]["hits"]:
|
|
return None
|
|
ids = []
|
|
documents = []
|
|
metadatas = []
|
|
|
|
for hit in result["hits"]["hits"]:
|
|
ids.append(hit["_id"])
|
|
documents.append(hit["_source"].get("text"))
|
|
metadatas.append(hit["_source"].get("metadata"))
|
|
|
|
return GetResult(ids=[ids], documents=[documents], metadatas=[metadatas])
|
|
|
|
# Status: works
|
|
def _result_to_search_result(self, result) -> SearchResult:
|
|
ids = []
|
|
distances = []
|
|
documents = []
|
|
metadatas = []
|
|
|
|
for hit in result["hits"]["hits"]:
|
|
ids.append(hit["_id"])
|
|
distances.append(hit["_score"])
|
|
documents.append(hit["_source"].get("text"))
|
|
metadatas.append(hit["_source"].get("metadata"))
|
|
|
|
return SearchResult(
|
|
ids=[ids],
|
|
distances=[distances],
|
|
documents=[documents],
|
|
metadatas=[metadatas],
|
|
)
|
|
|
|
# Status: works
|
|
def _create_index(self, dimension: int):
|
|
body = {
|
|
"mappings": {
|
|
"dynamic_templates": [
|
|
{
|
|
"strings": {
|
|
"match_mapping_type": "string",
|
|
"mapping": {"type": "keyword"},
|
|
}
|
|
}
|
|
],
|
|
"properties": {
|
|
"collection": {"type": "keyword"},
|
|
"id": {"type": "keyword"},
|
|
"vector": {
|
|
"type": "dense_vector",
|
|
"dims": dimension, # Adjust based on your vector dimensions
|
|
"index": True,
|
|
"similarity": "cosine",
|
|
},
|
|
"text": {"type": "text"},
|
|
"metadata": {"type": "object"},
|
|
},
|
|
}
|
|
}
|
|
self.client.indices.create(index=self._get_index_name(dimension), body=body)
|
|
|
|
# Status: works
|
|
|
|
def _create_batches(self, items: list[VectorItem], batch_size=100):
|
|
for i in range(0, len(items), batch_size):
|
|
yield items[i : min(i + batch_size, len(items))]
|
|
|
|
# Status: works
|
|
def has_collection(self, collection_name) -> bool:
|
|
query_body = {"query": {"bool": {"filter": []}}}
|
|
query_body["query"]["bool"]["filter"].append(
|
|
{"term": {"collection": collection_name}}
|
|
)
|
|
|
|
try:
|
|
result = self.client.count(index=f"{self.index_prefix}*", body=query_body)
|
|
|
|
return result.body["count"] > 0
|
|
except Exception as e:
|
|
return None
|
|
|
|
def delete_collection(self, collection_name: str):
|
|
query = {"query": {"term": {"collection": collection_name}}}
|
|
self.client.delete_by_query(index=f"{self.index_prefix}*", body=query)
|
|
|
|
# Status: works
|
|
def search(
|
|
self, collection_name: str, vectors: list[list[float]], limit: int
|
|
) -> Optional[SearchResult]:
|
|
query = {
|
|
"size": limit,
|
|
"_source": ["text", "metadata"],
|
|
"query": {
|
|
"script_score": {
|
|
"query": {
|
|
"bool": {"filter": [{"term": {"collection": collection_name}}]}
|
|
},
|
|
"script": {
|
|
"source": "cosineSimilarity(params.vector, 'vector') + 1.0",
|
|
"params": {
|
|
"vector": vectors[0]
|
|
}, # Assuming single query vector
|
|
},
|
|
}
|
|
},
|
|
}
|
|
|
|
result = self.client.search(
|
|
index=self._get_index_name(len(vectors[0])), body=query
|
|
)
|
|
|
|
return self._result_to_search_result(result)
|
|
|
|
# Status: only tested halfwat
|
|
def query(
|
|
self, collection_name: str, filter: dict, limit: Optional[int] = None
|
|
) -> Optional[GetResult]:
|
|
if not self.has_collection(collection_name):
|
|
return None
|
|
|
|
query_body = {
|
|
"query": {"bool": {"filter": []}},
|
|
"_source": ["text", "metadata"],
|
|
}
|
|
|
|
for field, value in filter.items():
|
|
query_body["query"]["bool"]["filter"].append({"term": {field: value}})
|
|
query_body["query"]["bool"]["filter"].append(
|
|
{"term": {"collection": collection_name}}
|
|
)
|
|
size = limit if limit else 10
|
|
|
|
try:
|
|
result = self.client.search(
|
|
index=f"{self.index_prefix}*",
|
|
body=query_body,
|
|
size=size,
|
|
)
|
|
|
|
return self._result_to_get_result(result)
|
|
|
|
except Exception as e:
|
|
return None
|
|
|
|
# Status: works
|
|
def _has_index(self, dimension: int):
|
|
return self.client.indices.exists(
|
|
index=self._get_index_name(dimension=dimension)
|
|
)
|
|
|
|
def get_or_create_index(self, dimension: int):
|
|
if not self._has_index(dimension=dimension):
|
|
self._create_index(dimension=dimension)
|
|
|
|
# Status: works
|
|
def get(self, collection_name: str) -> Optional[GetResult]:
|
|
# Get all the items in the collection.
|
|
query = {
|
|
"query": {"bool": {"filter": [{"term": {"collection": collection_name}}]}},
|
|
"_source": ["text", "metadata"],
|
|
}
|
|
results = list(scan(self.client, index=f"{self.index_prefix}*", query=query))
|
|
|
|
return self._scan_result_to_get_result(results)
|
|
|
|
# Status: works
|
|
def insert(self, collection_name: str, items: list[VectorItem]):
|
|
if not self._has_index(dimension=len(items[0]["vector"])):
|
|
self._create_index(dimension=len(items[0]["vector"]))
|
|
|
|
for batch in self._create_batches(items):
|
|
actions = [
|
|
{
|
|
"_index": self._get_index_name(dimension=len(items[0]["vector"])),
|
|
"_id": item["id"],
|
|
"_source": {
|
|
"collection": collection_name,
|
|
"vector": item["vector"],
|
|
"text": item["text"],
|
|
"metadata": item["metadata"],
|
|
},
|
|
}
|
|
for item in batch
|
|
]
|
|
bulk(self.client, actions)
|
|
|
|
# Upsert documents using the update API with doc_as_upsert=True.
|
|
def upsert(self, collection_name: str, items: list[VectorItem]):
|
|
if not self._has_index(dimension=len(items[0]["vector"])):
|
|
self._create_index(dimension=len(items[0]["vector"]))
|
|
for batch in self._create_batches(items):
|
|
actions = [
|
|
{
|
|
"_op_type": "update",
|
|
"_index": self._get_index_name(dimension=len(item["vector"])),
|
|
"_id": item["id"],
|
|
"doc": {
|
|
"collection": collection_name,
|
|
"vector": item["vector"],
|
|
"text": item["text"],
|
|
"metadata": item["metadata"],
|
|
},
|
|
"doc_as_upsert": True,
|
|
}
|
|
for item in batch
|
|
]
|
|
bulk(self.client, actions)
|
|
|
|
# Delete specific documents from a collection by filtering on both collection and document IDs.
|
|
def delete(
|
|
self,
|
|
collection_name: str,
|
|
ids: Optional[list[str]] = None,
|
|
filter: Optional[dict] = None,
|
|
):
|
|
|
|
query = {
|
|
"query": {"bool": {"filter": [{"term": {"collection": collection_name}}]}}
|
|
}
|
|
# logic based on chromaDB
|
|
if ids:
|
|
query["query"]["bool"]["filter"].append({"terms": {"_id": ids}})
|
|
elif filter:
|
|
for field, value in filter.items():
|
|
query["query"]["bool"]["filter"].append(
|
|
{"term": {f"metadata.{field}": value}}
|
|
)
|
|
|
|
self.client.delete_by_query(index=f"{self.index_prefix}*", body=query)
|
|
|
|
def reset(self):
|
|
indices = self.client.indices.get(index=f"{self.index_prefix}*")
|
|
for index in indices:
|
|
self.client.indices.delete(index=index)
|