mirror of
https://github.com/open-webui/open-webui
synced 2024-11-17 22:12:51 +00:00
173 lines
6.1 KiB
Python
173 lines
6.1 KiB
Python
import chromadb
|
|
from chromadb import Settings
|
|
from chromadb.utils.batch_utils import create_batches
|
|
|
|
from typing import Optional
|
|
|
|
from open_webui.apps.retrieval.vector.main import VectorItem, SearchResult, GetResult
|
|
from open_webui.config import (
|
|
CHROMA_DATA_PATH,
|
|
CHROMA_HTTP_HOST,
|
|
CHROMA_HTTP_PORT,
|
|
CHROMA_HTTP_HEADERS,
|
|
CHROMA_HTTP_SSL,
|
|
CHROMA_TENANT,
|
|
CHROMA_DATABASE,
|
|
CHROMA_CLIENT_AUTH_PROVIDER,
|
|
CHROMA_CLIENT_AUTH_CREDENTIALS,
|
|
)
|
|
|
|
|
|
class ChromaClient:
|
|
def __init__(self):
|
|
settings_dict = {
|
|
"allow_reset": True,
|
|
"anonymized_telemetry": False,
|
|
}
|
|
if CHROMA_CLIENT_AUTH_PROVIDER is not None:
|
|
settings_dict["chroma_client_auth_provider"] = CHROMA_CLIENT_AUTH_PROVIDER
|
|
if CHROMA_CLIENT_AUTH_CREDENTIALS is not None:
|
|
settings_dict["chroma_client_auth_credentials"] = CHROMA_CLIENT_AUTH_CREDENTIALS
|
|
|
|
if CHROMA_HTTP_HOST != "":
|
|
self.client = chromadb.HttpClient(
|
|
host=CHROMA_HTTP_HOST,
|
|
port=CHROMA_HTTP_PORT,
|
|
headers=CHROMA_HTTP_HEADERS,
|
|
ssl=CHROMA_HTTP_SSL,
|
|
tenant=CHROMA_TENANT,
|
|
database=CHROMA_DATABASE,
|
|
settings=Settings(**settings_dict),
|
|
)
|
|
else:
|
|
self.client = chromadb.PersistentClient(
|
|
path=CHROMA_DATA_PATH,
|
|
settings=Settings(**settings_dict),
|
|
tenant=CHROMA_TENANT,
|
|
database=CHROMA_DATABASE,
|
|
)
|
|
|
|
def has_collection(self, collection_name: str) -> bool:
|
|
# Check if the collection exists based on the collection name.
|
|
collections = self.client.list_collections()
|
|
return collection_name in [collection.name for collection in collections]
|
|
|
|
def delete_collection(self, collection_name: str):
|
|
# Delete the collection based on the collection name.
|
|
return self.client.delete_collection(name=collection_name)
|
|
|
|
def search(
|
|
self, collection_name: str, vectors: list[list[float | int]], limit: int
|
|
) -> Optional[SearchResult]:
|
|
# Search for the nearest neighbor items based on the vectors and return 'limit' number of results.
|
|
try:
|
|
collection = self.client.get_collection(name=collection_name)
|
|
if collection:
|
|
result = collection.query(
|
|
query_embeddings=vectors,
|
|
n_results=limit,
|
|
)
|
|
|
|
return SearchResult(
|
|
**{
|
|
"ids": result["ids"],
|
|
"distances": result["distances"],
|
|
"documents": result["documents"],
|
|
"metadatas": result["metadatas"],
|
|
}
|
|
)
|
|
return None
|
|
except Exception as e:
|
|
return None
|
|
|
|
def query(
|
|
self, collection_name: str, filter: dict, limit: Optional[int] = None
|
|
) -> Optional[GetResult]:
|
|
# Query the items from the collection based on the filter.
|
|
try:
|
|
collection = self.client.get_collection(name=collection_name)
|
|
if collection:
|
|
result = collection.get(
|
|
where=filter,
|
|
limit=limit,
|
|
)
|
|
|
|
return GetResult(
|
|
**{
|
|
"ids": [result["ids"]],
|
|
"documents": [result["documents"]],
|
|
"metadatas": [result["metadatas"]],
|
|
}
|
|
)
|
|
return None
|
|
except Exception as e:
|
|
print(e)
|
|
return None
|
|
|
|
def get(self, collection_name: str) -> Optional[GetResult]:
|
|
# Get all the items in the collection.
|
|
collection = self.client.get_collection(name=collection_name)
|
|
if collection:
|
|
result = collection.get()
|
|
return GetResult(
|
|
**{
|
|
"ids": [result["ids"]],
|
|
"documents": [result["documents"]],
|
|
"metadatas": [result["metadatas"]],
|
|
}
|
|
)
|
|
return None
|
|
|
|
def insert(self, collection_name: str, items: list[VectorItem]):
|
|
# Insert the items into the collection, if the collection does not exist, it will be created.
|
|
collection = self.client.get_or_create_collection(
|
|
name=collection_name, metadata={"hnsw:space": "cosine"}
|
|
)
|
|
|
|
ids = [item["id"] for item in items]
|
|
documents = [item["text"] for item in items]
|
|
embeddings = [item["vector"] for item in items]
|
|
metadatas = [item["metadata"] for item in items]
|
|
|
|
for batch in create_batches(
|
|
api=self.client,
|
|
documents=documents,
|
|
embeddings=embeddings,
|
|
ids=ids,
|
|
metadatas=metadatas,
|
|
):
|
|
collection.add(*batch)
|
|
|
|
def upsert(self, collection_name: str, items: list[VectorItem]):
|
|
# Update the items in the collection, if the items are not present, insert them. If the collection does not exist, it will be created.
|
|
collection = self.client.get_or_create_collection(
|
|
name=collection_name, metadata={"hnsw:space": "cosine"}
|
|
)
|
|
|
|
ids = [item["id"] for item in items]
|
|
documents = [item["text"] for item in items]
|
|
embeddings = [item["vector"] for item in items]
|
|
metadatas = [item["metadata"] for item in items]
|
|
|
|
collection.upsert(
|
|
ids=ids, documents=documents, embeddings=embeddings, metadatas=metadatas
|
|
)
|
|
|
|
def delete(
|
|
self,
|
|
collection_name: str,
|
|
ids: Optional[list[str]] = None,
|
|
filter: Optional[dict] = None,
|
|
):
|
|
# Delete the items from the collection based on the ids.
|
|
collection = self.client.get_collection(name=collection_name)
|
|
if collection:
|
|
if ids:
|
|
collection.delete(ids=ids)
|
|
elif filter:
|
|
collection.delete(where=filter)
|
|
|
|
def reset(self):
|
|
# Resets the database. This will delete all collections and item entries.
|
|
return self.client.reset()
|