mirror of
https://github.com/open-webui/open-webui
synced 2025-01-18 16:51:17 +00:00
233 lines
7.0 KiB
Python
233 lines
7.0 KiB
Python
import os
|
|
import re
|
|
import logging
|
|
from typing import List
|
|
from huggingface_hub import snapshot_download
|
|
|
|
from config import SRC_LOG_LEVELS, CHROMA_CLIENT
|
|
|
|
log = logging.getLogger(__name__)
|
|
log.setLevel(SRC_LOG_LEVELS["RAG"])
|
|
|
|
|
|
def query_doc(collection_name: str, query: str, k: int, embedding_function):
|
|
try:
|
|
# if you use docker use the model from the environment variable
|
|
collection = CHROMA_CLIENT.get_collection(
|
|
name=collection_name,
|
|
embedding_function=embedding_function,
|
|
)
|
|
result = collection.query(
|
|
query_texts=[query],
|
|
n_results=k,
|
|
)
|
|
return result
|
|
except Exception as e:
|
|
raise e
|
|
|
|
|
|
def merge_and_sort_query_results(query_results, k):
|
|
# Initialize lists to store combined data
|
|
combined_ids = []
|
|
combined_distances = []
|
|
combined_metadatas = []
|
|
combined_documents = []
|
|
|
|
# Combine data from each dictionary
|
|
for data in query_results:
|
|
combined_ids.extend(data["ids"][0])
|
|
combined_distances.extend(data["distances"][0])
|
|
combined_metadatas.extend(data["metadatas"][0])
|
|
combined_documents.extend(data["documents"][0])
|
|
|
|
# Create a list of tuples (distance, id, metadata, document)
|
|
combined = list(
|
|
zip(combined_distances, combined_ids, combined_metadatas, combined_documents)
|
|
)
|
|
|
|
# Sort the list based on distances
|
|
combined.sort(key=lambda x: x[0])
|
|
|
|
# Unzip the sorted list
|
|
sorted_distances, sorted_ids, sorted_metadatas, sorted_documents = zip(*combined)
|
|
|
|
# Slicing the lists to include only k elements
|
|
sorted_distances = list(sorted_distances)[:k]
|
|
sorted_ids = list(sorted_ids)[:k]
|
|
sorted_metadatas = list(sorted_metadatas)[:k]
|
|
sorted_documents = list(sorted_documents)[:k]
|
|
|
|
# Create the output dictionary
|
|
merged_query_results = {
|
|
"ids": [sorted_ids],
|
|
"distances": [sorted_distances],
|
|
"metadatas": [sorted_metadatas],
|
|
"documents": [sorted_documents],
|
|
"embeddings": None,
|
|
"uris": None,
|
|
"data": None,
|
|
}
|
|
|
|
return merged_query_results
|
|
|
|
|
|
def query_collection(
|
|
collection_names: List[str], query: str, k: int, embedding_function
|
|
):
|
|
|
|
results = []
|
|
|
|
for collection_name in collection_names:
|
|
try:
|
|
# if you use docker use the model from the environment variable
|
|
collection = CHROMA_CLIENT.get_collection(
|
|
name=collection_name,
|
|
embedding_function=embedding_function,
|
|
)
|
|
|
|
result = collection.query(
|
|
query_texts=[query],
|
|
n_results=k,
|
|
)
|
|
results.append(result)
|
|
except:
|
|
pass
|
|
|
|
return merge_and_sort_query_results(results, k)
|
|
|
|
|
|
def rag_template(template: str, context: str, query: str):
|
|
template = template.replace("[context]", context)
|
|
template = template.replace("[query]", query)
|
|
return template
|
|
|
|
|
|
def rag_messages(docs, messages, template, k, embedding_function):
|
|
log.debug(f"docs: {docs}")
|
|
|
|
last_user_message_idx = None
|
|
for i in range(len(messages) - 1, -1, -1):
|
|
if messages[i]["role"] == "user":
|
|
last_user_message_idx = i
|
|
break
|
|
|
|
user_message = messages[last_user_message_idx]
|
|
|
|
if isinstance(user_message["content"], list):
|
|
# Handle list content input
|
|
content_type = "list"
|
|
query = ""
|
|
for content_item in user_message["content"]:
|
|
if content_item["type"] == "text":
|
|
query = content_item["text"]
|
|
break
|
|
elif isinstance(user_message["content"], str):
|
|
# Handle text content input
|
|
content_type = "text"
|
|
query = user_message["content"]
|
|
else:
|
|
# Fallback in case the input does not match expected types
|
|
content_type = None
|
|
query = ""
|
|
|
|
relevant_contexts = []
|
|
|
|
for doc in docs:
|
|
context = None
|
|
|
|
try:
|
|
if doc["type"] == "collection":
|
|
context = query_collection(
|
|
collection_names=doc["collection_names"],
|
|
query=query,
|
|
k=k,
|
|
embedding_function=embedding_function,
|
|
)
|
|
elif doc["type"] == "text":
|
|
context = doc["content"]
|
|
else:
|
|
context = query_doc(
|
|
collection_name=doc["collection_name"],
|
|
query=query,
|
|
k=k,
|
|
embedding_function=embedding_function,
|
|
)
|
|
except Exception as e:
|
|
log.exception(e)
|
|
context = None
|
|
|
|
relevant_contexts.append(context)
|
|
|
|
log.debug(f"relevant_contexts: {relevant_contexts}")
|
|
|
|
context_string = ""
|
|
for context in relevant_contexts:
|
|
if context:
|
|
context_string += " ".join(context["documents"][0]) + "\n"
|
|
|
|
ra_content = rag_template(
|
|
template=template,
|
|
context=context_string,
|
|
query=query,
|
|
)
|
|
|
|
if content_type == "list":
|
|
new_content = []
|
|
for content_item in user_message["content"]:
|
|
if content_item["type"] == "text":
|
|
# Update the text item's content with ra_content
|
|
new_content.append({"type": "text", "text": ra_content})
|
|
else:
|
|
# Keep other types of content as they are
|
|
new_content.append(content_item)
|
|
new_user_message = {**user_message, "content": new_content}
|
|
else:
|
|
new_user_message = {
|
|
**user_message,
|
|
"content": ra_content,
|
|
}
|
|
|
|
messages[last_user_message_idx] = new_user_message
|
|
|
|
return messages
|
|
|
|
|
|
def get_embedding_model_path(
|
|
embedding_model: str, update_embedding_model: bool = False
|
|
):
|
|
# Construct huggingface_hub kwargs with local_files_only to return the snapshot path
|
|
cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
|
|
|
|
local_files_only = not update_embedding_model
|
|
|
|
snapshot_kwargs = {
|
|
"cache_dir": cache_dir,
|
|
"local_files_only": local_files_only,
|
|
}
|
|
|
|
log.debug(f"embedding_model: {embedding_model}")
|
|
log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
|
|
|
|
# Inspiration from upstream sentence_transformers
|
|
if (
|
|
os.path.exists(embedding_model)
|
|
or ("\\" in embedding_model or embedding_model.count("/") > 1)
|
|
and local_files_only
|
|
):
|
|
# If fully qualified path exists, return input, else set repo_id
|
|
return embedding_model
|
|
elif "/" not in embedding_model:
|
|
# Set valid repo_id for model short-name
|
|
embedding_model = "sentence-transformers" + "/" + embedding_model
|
|
|
|
snapshot_kwargs["repo_id"] = embedding_model
|
|
|
|
# Attempt to query the huggingface_hub library to determine the local path and/or to update
|
|
try:
|
|
embedding_model_repo_path = snapshot_download(**snapshot_kwargs)
|
|
log.debug(f"embedding_model_repo_path: {embedding_model_repo_path}")
|
|
return embedding_model_repo_path
|
|
except Exception as e:
|
|
log.exception(f"Cannot determine embedding model snapshot path: {e}")
|
|
return embedding_model
|