open-webui/backend/apps/rag/main.py
2024-04-25 13:38:18 -05:00

773 lines
22 KiB
Python

from fastapi import (
FastAPI,
Depends,
HTTPException,
status,
UploadFile,
File,
Form,
)
from fastapi.middleware.cors import CORSMiddleware
import os, shutil, logging, re
from pathlib import Path
from typing import List
from chromadb.utils.batch_utils import create_batches
from langchain_community.document_loaders import (
WebBaseLoader,
TextLoader,
PyPDFLoader,
CSVLoader,
BSHTMLLoader,
Docx2txtLoader,
UnstructuredEPubLoader,
UnstructuredWordDocumentLoader,
UnstructuredMarkdownLoader,
UnstructuredXMLLoader,
UnstructuredRSTLoader,
UnstructuredExcelLoader,
)
from langchain.text_splitter import RecursiveCharacterTextSplitter
from pydantic import BaseModel
from typing import Optional
import mimetypes
import uuid
import json
import sentence_transformers
from apps.web.models.documents import (
Documents,
DocumentForm,
DocumentResponse,
)
from apps.rag.utils import (
get_model_path,
query_embeddings_doc,
query_embeddings_function,
query_embeddings_collection,
)
from utils.misc import (
calculate_sha256,
calculate_sha256_string,
sanitize_filename,
extract_folders_after_data_docs,
)
from utils.utils import get_current_user, get_admin_user
from config import (
SRC_LOG_LEVELS,
UPLOAD_DIR,
DOCS_DIR,
RAG_TOP_K,
RAG_RELEVANCE_THRESHOLD,
RAG_EMBEDDING_ENGINE,
RAG_EMBEDDING_MODEL,
RAG_EMBEDDING_MODEL_AUTO_UPDATE,
RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
RAG_RERANKING_MODEL,
RAG_RERANKING_MODEL_AUTO_UPDATE,
RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
RAG_OPENAI_API_BASE_URL,
RAG_OPENAI_API_KEY,
DEVICE_TYPE,
CHROMA_CLIENT,
CHUNK_SIZE,
CHUNK_OVERLAP,
RAG_TEMPLATE,
)
from constants import ERROR_MESSAGES
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
app = FastAPI()
app.state.TOP_K = RAG_TOP_K
app.state.RELEVANCE_THRESHOLD = RAG_RELEVANCE_THRESHOLD
app.state.CHUNK_SIZE = CHUNK_SIZE
app.state.CHUNK_OVERLAP = CHUNK_OVERLAP
app.state.RAG_EMBEDDING_ENGINE = RAG_EMBEDDING_ENGINE
app.state.RAG_EMBEDDING_MODEL = RAG_EMBEDDING_MODEL
app.state.RAG_RERANKING_MODEL = RAG_RERANKING_MODEL
app.state.RAG_TEMPLATE = RAG_TEMPLATE
app.state.OPENAI_API_BASE_URL = RAG_OPENAI_API_BASE_URL
app.state.OPENAI_API_KEY = RAG_OPENAI_API_KEY
app.state.PDF_EXTRACT_IMAGES = False
def update_embedding_model(
embedding_model: str,
update_model: bool = False,
):
if embedding_model and app.state.RAG_EMBEDDING_ENGINE == "":
app.state.sentence_transformer_ef = sentence_transformers.SentenceTransformer(
get_model_path(embedding_model, update_model),
device=DEVICE_TYPE,
trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
)
else:
app.state.sentence_transformer_ef = None
def update_reranking_model(
reranking_model: str,
update_model: bool = False,
):
if reranking_model:
app.state.sentence_transformer_rf = sentence_transformers.CrossEncoder(
get_model_path(reranking_model, update_model),
device=DEVICE_TYPE,
trust_remote_code=RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
)
else:
app.state.sentence_transformer_rf = None
update_embedding_model(
app.state.RAG_EMBEDDING_MODEL,
RAG_EMBEDDING_MODEL_AUTO_UPDATE,
)
update_reranking_model(
app.state.RAG_RERANKING_MODEL,
RAG_RERANKING_MODEL_AUTO_UPDATE,
)
origins = ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class CollectionNameForm(BaseModel):
collection_name: Optional[str] = "test"
class StoreWebForm(CollectionNameForm):
url: str
@app.get("/")
async def get_status():
return {
"status": True,
"chunk_size": app.state.CHUNK_SIZE,
"chunk_overlap": app.state.CHUNK_OVERLAP,
"template": app.state.RAG_TEMPLATE,
"embedding_engine": app.state.RAG_EMBEDDING_ENGINE,
"embedding_model": app.state.RAG_EMBEDDING_MODEL,
"reranking_model": app.state.RAG_RERANKING_MODEL,
}
@app.get("/embedding")
async def get_embedding_config(user=Depends(get_admin_user)):
return {
"status": True,
"embedding_engine": app.state.RAG_EMBEDDING_ENGINE,
"embedding_model": app.state.RAG_EMBEDDING_MODEL,
"openai_config": {
"url": app.state.OPENAI_API_BASE_URL,
"key": app.state.OPENAI_API_KEY,
},
}
@app.get("/reranking")
async def get_reraanking_config(user=Depends(get_admin_user)):
return {"status": True, "reranking_model": app.state.RAG_RERANKING_MODEL}
class OpenAIConfigForm(BaseModel):
url: str
key: str
class EmbeddingModelUpdateForm(BaseModel):
openai_config: Optional[OpenAIConfigForm] = None
embedding_engine: str
embedding_model: str
@app.post("/embedding/update")
async def update_embedding_config(
form_data: EmbeddingModelUpdateForm, user=Depends(get_admin_user)
):
log.info(
f"Updating embedding model: {app.state.RAG_EMBEDDING_MODEL} to {form_data.embedding_model}"
)
try:
app.state.RAG_EMBEDDING_ENGINE = form_data.embedding_engine
app.state.RAG_EMBEDDING_MODEL = form_data.embedding_model
if app.state.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]:
if form_data.openai_config != None:
app.state.OPENAI_API_BASE_URL = form_data.openai_config.url
app.state.OPENAI_API_KEY = form_data.openai_config.key
update_embedding_model(app.state.RAG_EMBEDDING_MODEL, True)
return {
"status": True,
"embedding_engine": app.state.RAG_EMBEDDING_ENGINE,
"embedding_model": app.state.RAG_EMBEDDING_MODEL,
"openai_config": {
"url": app.state.OPENAI_API_BASE_URL,
"key": app.state.OPENAI_API_KEY,
},
}
except Exception as e:
log.exception(f"Problem updating embedding model: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=ERROR_MESSAGES.DEFAULT(e),
)
class RerankingModelUpdateForm(BaseModel):
reranking_model: str
@app.post("/reranking/update")
async def update_reranking_config(
form_data: RerankingModelUpdateForm, user=Depends(get_admin_user)
):
log.info(
f"Updating reranking model: {app.state.RAG_RERANKING_MODEL} to {form_data.reranking_model}"
)
try:
app.state.RAG_RERANKING_MODEL = form_data.reranking_model
update_reranking_model(app.state.RAG_RERANKING_MODEL, True)
return {
"status": True,
"reranking_model": app.state.RAG_RERANKING_MODEL,
}
except Exception as e:
log.exception(f"Problem updating reranking model: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=ERROR_MESSAGES.DEFAULT(e),
)
@app.get("/config")
async def get_rag_config(user=Depends(get_admin_user)):
return {
"status": True,
"pdf_extract_images": app.state.PDF_EXTRACT_IMAGES,
"chunk": {
"chunk_size": app.state.CHUNK_SIZE,
"chunk_overlap": app.state.CHUNK_OVERLAP,
},
}
class ChunkParamUpdateForm(BaseModel):
chunk_size: int
chunk_overlap: int
class ConfigUpdateForm(BaseModel):
pdf_extract_images: bool
chunk: ChunkParamUpdateForm
@app.post("/config/update")
async def update_rag_config(form_data: ConfigUpdateForm, user=Depends(get_admin_user)):
app.state.PDF_EXTRACT_IMAGES = form_data.pdf_extract_images
app.state.CHUNK_SIZE = form_data.chunk.chunk_size
app.state.CHUNK_OVERLAP = form_data.chunk.chunk_overlap
return {
"status": True,
"pdf_extract_images": app.state.PDF_EXTRACT_IMAGES,
"chunk": {
"chunk_size": app.state.CHUNK_SIZE,
"chunk_overlap": app.state.CHUNK_OVERLAP,
},
}
@app.get("/template")
async def get_rag_template(user=Depends(get_current_user)):
return {
"status": True,
"template": app.state.RAG_TEMPLATE,
}
@app.get("/query/settings")
async def get_query_settings(user=Depends(get_admin_user)):
return {
"status": True,
"template": app.state.RAG_TEMPLATE,
"k": app.state.TOP_K,
"r": app.state.RELEVANCE_THRESHOLD,
}
class QuerySettingsForm(BaseModel):
k: Optional[int] = None
r: Optional[float] = None
template: Optional[str] = None
@app.post("/query/settings/update")
async def update_query_settings(
form_data: QuerySettingsForm, user=Depends(get_admin_user)
):
app.state.RAG_TEMPLATE = form_data.template if form_data.template else RAG_TEMPLATE
app.state.TOP_K = form_data.k if form_data.k else 4
app.state.RELEVANCE_THRESHOLD = form_data.r if form_data.r else 0.0
return {"status": True, "template": app.state.RAG_TEMPLATE}
class QueryDocForm(BaseModel):
collection_name: str
query: str
k: Optional[int] = None
r: Optional[float] = None
@app.post("/query/doc")
def query_doc_handler(
form_data: QueryDocForm,
user=Depends(get_current_user),
):
try:
embeddings_function = query_embeddings_function(
app.state.RAG_EMBEDDING_ENGINE,
app.state.RAG_EMBEDDING_MODEL,
app.state.sentence_transformer_ef,
app.state.OPENAI_API_KEY,
app.state.OPENAI_API_BASE_URL,
)
return query_embeddings_doc(
collection_name=form_data.collection_name,
query=form_data.query,
k=form_data.k if form_data.k else app.state.TOP_K,
r=form_data.r if form_data.r else app.state.RELEVANCE_THRESHOLD,
embeddings_function=embeddings_function,
reranking_function=app.state.sentence_transformer_rf,
)
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
class QueryCollectionsForm(BaseModel):
collection_names: List[str]
query: str
k: Optional[int] = None
r: Optional[float] = None
@app.post("/query/collection")
def query_collection_handler(
form_data: QueryCollectionsForm,
user=Depends(get_current_user),
):
try:
embeddings_function = query_embeddings_function(
app.state.RAG_EMBEDDING_ENGINE,
app.state.RAG_EMBEDDING_MODEL,
app.state.sentence_transformer_ef,
app.state.OPENAI_API_KEY,
app.state.OPENAI_API_BASE_URL,
)
return query_embeddings_collection(
collection_names=form_data.collection_names,
query=form_data.query,
k=form_data.k if form_data.k else app.state.TOP_K,
r=form_data.r if form_data.r else app.state.RELEVANCE_THRESHOLD,
embeddings_function=embeddings_function,
reranking_function=app.state.sentence_transformer_rf,
)
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
@app.post("/web")
def store_web(form_data: StoreWebForm, user=Depends(get_current_user)):
# "https://www.gutenberg.org/files/1727/1727-h/1727-h.htm"
try:
loader = WebBaseLoader(form_data.url)
data = loader.load()
collection_name = form_data.collection_name
if collection_name == "":
collection_name = calculate_sha256_string(form_data.url)[:63]
store_data_in_vector_db(data, collection_name, overwrite=True)
return {
"status": True,
"collection_name": collection_name,
"filename": form_data.url,
}
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
def store_data_in_vector_db(data, collection_name, overwrite: bool = False) -> bool:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=app.state.CHUNK_SIZE,
chunk_overlap=app.state.CHUNK_OVERLAP,
add_start_index=True,
)
docs = text_splitter.split_documents(data)
if len(docs) > 0:
log.info(f"store_data_in_vector_db {docs}")
return store_docs_in_vector_db(docs, collection_name, overwrite), None
else:
raise ValueError(ERROR_MESSAGES.EMPTY_CONTENT)
def store_text_in_vector_db(
text, metadata, collection_name, overwrite: bool = False
) -> bool:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=app.state.CHUNK_SIZE,
chunk_overlap=app.state.CHUNK_OVERLAP,
add_start_index=True,
)
docs = text_splitter.create_documents([text], metadatas=[metadata])
return store_docs_in_vector_db(docs, collection_name, overwrite)
def store_docs_in_vector_db(docs, collection_name, overwrite: bool = False) -> bool:
log.info(f"store_docs_in_vector_db {docs} {collection_name}")
texts = [doc.page_content for doc in docs]
metadatas = [doc.metadata for doc in docs]
try:
if overwrite:
for collection in CHROMA_CLIENT.list_collections():
if collection_name == collection.name:
log.info(f"deleting existing collection {collection_name}")
CHROMA_CLIENT.delete_collection(name=collection_name)
collection = CHROMA_CLIENT.create_collection(name=collection_name)
embedding_func = query_embeddings_function(
app.state.RAG_EMBEDDING_ENGINE,
app.state.RAG_EMBEDDING_MODEL,
app.state.sentence_transformer_ef,
app.state.OPENAI_API_KEY,
app.state.OPENAI_API_BASE_URL,
)
embedding_texts = list(map(lambda x: x.replace("\n", " "), texts))
embeddings = embedding_func(embedding_texts)
for batch in create_batches(
api=CHROMA_CLIENT,
ids=[str(uuid.uuid1()) for _ in texts],
metadatas=metadatas,
embeddings=embeddings,
documents=texts,
):
collection.add(*batch)
return True
except Exception as e:
log.exception(e)
if e.__class__.__name__ == "UniqueConstraintError":
return True
return False
def get_loader(filename: str, file_content_type: str, file_path: str):
file_ext = filename.split(".")[-1].lower()
known_type = True
known_source_ext = [
"go",
"py",
"java",
"sh",
"bat",
"ps1",
"cmd",
"js",
"ts",
"css",
"cpp",
"hpp",
"h",
"c",
"cs",
"sql",
"log",
"ini",
"pl",
"pm",
"r",
"dart",
"dockerfile",
"env",
"php",
"hs",
"hsc",
"lua",
"nginxconf",
"conf",
"m",
"mm",
"plsql",
"perl",
"rb",
"rs",
"db2",
"scala",
"bash",
"swift",
"vue",
"svelte",
]
if file_ext == "pdf":
loader = PyPDFLoader(file_path, extract_images=app.state.PDF_EXTRACT_IMAGES)
elif file_ext == "csv":
loader = CSVLoader(file_path)
elif file_ext == "rst":
loader = UnstructuredRSTLoader(file_path, mode="elements")
elif file_ext == "xml":
loader = UnstructuredXMLLoader(file_path)
elif file_ext in ["htm", "html"]:
loader = BSHTMLLoader(file_path, open_encoding="unicode_escape")
elif file_ext == "md":
loader = UnstructuredMarkdownLoader(file_path)
elif file_content_type == "application/epub+zip":
loader = UnstructuredEPubLoader(file_path)
elif (
file_content_type
== "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
or file_ext in ["doc", "docx"]
):
loader = Docx2txtLoader(file_path)
elif file_content_type in [
"application/vnd.ms-excel",
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
] or file_ext in ["xls", "xlsx"]:
loader = UnstructuredExcelLoader(file_path)
elif file_ext in known_source_ext or (
file_content_type and file_content_type.find("text/") >= 0
):
loader = TextLoader(file_path, autodetect_encoding=True)
else:
loader = TextLoader(file_path, autodetect_encoding=True)
known_type = False
return loader, known_type
@app.post("/doc")
def store_doc(
collection_name: Optional[str] = Form(None),
file: UploadFile = File(...),
user=Depends(get_current_user),
):
# "https://www.gutenberg.org/files/1727/1727-h/1727-h.htm"
log.info(f"file.content_type: {file.content_type}")
try:
unsanitized_filename = file.filename
filename = os.path.basename(unsanitized_filename)
file_path = f"{UPLOAD_DIR}/{filename}"
contents = file.file.read()
with open(file_path, "wb") as f:
f.write(contents)
f.close()
f = open(file_path, "rb")
if collection_name == None:
collection_name = calculate_sha256(f)[:63]
f.close()
loader, known_type = get_loader(filename, file.content_type, file_path)
data = loader.load()
try:
result = store_data_in_vector_db(data, collection_name)
if result:
return {
"status": True,
"collection_name": collection_name,
"filename": filename,
"known_type": known_type,
}
except Exception as e:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=e,
)
except Exception as e:
log.exception(e)
if "No pandoc was found" in str(e):
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED,
)
else:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
class TextRAGForm(BaseModel):
name: str
content: str
collection_name: Optional[str] = None
@app.post("/text")
def store_text(
form_data: TextRAGForm,
user=Depends(get_current_user),
):
collection_name = form_data.collection_name
if collection_name == None:
collection_name = calculate_sha256_string(form_data.content)
result = store_text_in_vector_db(
form_data.content,
metadata={"name": form_data.name, "created_by": user.id},
collection_name=collection_name,
)
if result:
return {"status": True, "collection_name": collection_name}
else:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=ERROR_MESSAGES.DEFAULT(),
)
@app.get("/scan")
def scan_docs_dir(user=Depends(get_admin_user)):
for path in Path(DOCS_DIR).rglob("./**/*"):
try:
if path.is_file() and not path.name.startswith("."):
tags = extract_folders_after_data_docs(path)
filename = path.name
file_content_type = mimetypes.guess_type(path)
f = open(path, "rb")
collection_name = calculate_sha256(f)[:63]
f.close()
loader, known_type = get_loader(
filename, file_content_type[0], str(path)
)
data = loader.load()
try:
result = store_data_in_vector_db(data, collection_name)
if result:
sanitized_filename = sanitize_filename(filename)
doc = Documents.get_doc_by_name(sanitized_filename)
if doc == None:
doc = Documents.insert_new_doc(
user.id,
DocumentForm(
**{
"name": sanitized_filename,
"title": filename,
"collection_name": collection_name,
"filename": filename,
"content": (
json.dumps(
{
"tags": list(
map(
lambda name: {"name": name},
tags,
)
)
}
)
if len(tags)
else "{}"
),
}
),
)
except Exception as e:
log.exception(e)
pass
except Exception as e:
log.exception(e)
return True
@app.get("/reset/db")
def reset_vector_db(user=Depends(get_admin_user)):
CHROMA_CLIENT.reset()
@app.get("/reset")
def reset(user=Depends(get_admin_user)) -> bool:
folder = f"{UPLOAD_DIR}"
for filename in os.listdir(folder):
file_path = os.path.join(folder, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
log.error("Failed to delete %s. Reason: %s" % (file_path, e))
try:
CHROMA_CLIENT.reset()
except Exception as e:
log.exception(e)
return True