mirror of
https://github.com/open-webui/open-webui
synced 2024-11-24 21:13:59 +00:00
1545 lines
48 KiB
Python
1545 lines
48 KiB
Python
from contextlib import asynccontextmanager
|
|
from bs4 import BeautifulSoup
|
|
import json
|
|
import markdown
|
|
import time
|
|
import os
|
|
import sys
|
|
import logging
|
|
import aiohttp
|
|
import requests
|
|
import mimetypes
|
|
import shutil
|
|
import os
|
|
import inspect
|
|
import asyncio
|
|
|
|
from fastapi import FastAPI, Request, Depends, status, UploadFile, File, Form
|
|
from fastapi.staticfiles import StaticFiles
|
|
from fastapi.responses import JSONResponse
|
|
from fastapi import HTTPException
|
|
from fastapi.middleware.wsgi import WSGIMiddleware
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
from starlette.exceptions import HTTPException as StarletteHTTPException
|
|
from starlette.middleware.base import BaseHTTPMiddleware
|
|
from starlette.responses import StreamingResponse, Response
|
|
|
|
|
|
from apps.socket.main import app as socket_app
|
|
from apps.ollama.main import (
|
|
app as ollama_app,
|
|
OpenAIChatCompletionForm,
|
|
get_all_models as get_ollama_models,
|
|
generate_openai_chat_completion as generate_ollama_chat_completion,
|
|
)
|
|
from apps.openai.main import (
|
|
app as openai_app,
|
|
get_all_models as get_openai_models,
|
|
generate_chat_completion as generate_openai_chat_completion,
|
|
)
|
|
|
|
from apps.audio.main import app as audio_app
|
|
from apps.images.main import app as images_app
|
|
from apps.rag.main import app as rag_app
|
|
from apps.webui.main import app as webui_app
|
|
|
|
|
|
from pydantic import BaseModel
|
|
from typing import List, Optional
|
|
|
|
from apps.webui.models.models import Models, ModelModel
|
|
from apps.webui.models.tools import Tools
|
|
from apps.webui.utils import load_toolkit_module_by_id
|
|
|
|
|
|
from utils.utils import (
|
|
get_admin_user,
|
|
get_verified_user,
|
|
get_current_user,
|
|
get_http_authorization_cred,
|
|
)
|
|
from utils.task import (
|
|
title_generation_template,
|
|
search_query_generation_template,
|
|
tools_function_calling_generation_template,
|
|
)
|
|
from utils.misc import get_last_user_message, add_or_update_system_message
|
|
|
|
from apps.rag.utils import get_rag_context, rag_template
|
|
|
|
from config import (
|
|
CONFIG_DATA,
|
|
WEBUI_NAME,
|
|
WEBUI_URL,
|
|
WEBUI_AUTH,
|
|
ENV,
|
|
VERSION,
|
|
CHANGELOG,
|
|
FRONTEND_BUILD_DIR,
|
|
CACHE_DIR,
|
|
STATIC_DIR,
|
|
ENABLE_OPENAI_API,
|
|
ENABLE_OLLAMA_API,
|
|
ENABLE_MODEL_FILTER,
|
|
MODEL_FILTER_LIST,
|
|
GLOBAL_LOG_LEVEL,
|
|
SRC_LOG_LEVELS,
|
|
WEBHOOK_URL,
|
|
ENABLE_ADMIN_EXPORT,
|
|
WEBUI_BUILD_HASH,
|
|
TASK_MODEL,
|
|
TASK_MODEL_EXTERNAL,
|
|
TITLE_GENERATION_PROMPT_TEMPLATE,
|
|
SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE,
|
|
SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD,
|
|
TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE,
|
|
AppConfig,
|
|
)
|
|
from constants import ERROR_MESSAGES
|
|
|
|
logging.basicConfig(stream=sys.stdout, level=GLOBAL_LOG_LEVEL)
|
|
log = logging.getLogger(__name__)
|
|
log.setLevel(SRC_LOG_LEVELS["MAIN"])
|
|
|
|
|
|
class SPAStaticFiles(StaticFiles):
|
|
async def get_response(self, path: str, scope):
|
|
try:
|
|
return await super().get_response(path, scope)
|
|
except (HTTPException, StarletteHTTPException) as ex:
|
|
if ex.status_code == 404:
|
|
return await super().get_response("index.html", scope)
|
|
else:
|
|
raise ex
|
|
|
|
|
|
print(
|
|
rf"""
|
|
___ __ __ _ _ _ ___
|
|
/ _ \ _ __ ___ _ __ \ \ / /__| |__ | | | |_ _|
|
|
| | | | '_ \ / _ \ '_ \ \ \ /\ / / _ \ '_ \| | | || |
|
|
| |_| | |_) | __/ | | | \ V V / __/ |_) | |_| || |
|
|
\___/| .__/ \___|_| |_| \_/\_/ \___|_.__/ \___/|___|
|
|
|_|
|
|
|
|
|
|
v{VERSION} - building the best open-source AI user interface.
|
|
{f"Commit: {WEBUI_BUILD_HASH}" if WEBUI_BUILD_HASH != "dev-build" else ""}
|
|
https://github.com/open-webui/open-webui
|
|
"""
|
|
)
|
|
|
|
|
|
@asynccontextmanager
|
|
async def lifespan(app: FastAPI):
|
|
yield
|
|
|
|
|
|
app = FastAPI(
|
|
docs_url="/docs" if ENV == "dev" else None, redoc_url=None, lifespan=lifespan
|
|
)
|
|
|
|
app.state.config = AppConfig()
|
|
|
|
app.state.config.ENABLE_OPENAI_API = ENABLE_OPENAI_API
|
|
app.state.config.ENABLE_OLLAMA_API = ENABLE_OLLAMA_API
|
|
|
|
app.state.config.ENABLE_MODEL_FILTER = ENABLE_MODEL_FILTER
|
|
app.state.config.MODEL_FILTER_LIST = MODEL_FILTER_LIST
|
|
|
|
app.state.config.WEBHOOK_URL = WEBHOOK_URL
|
|
|
|
|
|
app.state.config.TASK_MODEL = TASK_MODEL
|
|
app.state.config.TASK_MODEL_EXTERNAL = TASK_MODEL_EXTERNAL
|
|
app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE = TITLE_GENERATION_PROMPT_TEMPLATE
|
|
app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE = (
|
|
SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE
|
|
)
|
|
app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD = (
|
|
SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD
|
|
)
|
|
app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE = (
|
|
TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE
|
|
)
|
|
|
|
app.state.MODELS = {}
|
|
|
|
origins = ["*"]
|
|
|
|
|
|
async def get_function_call_response(messages, tool_id, template, task_model_id, user):
|
|
tool = Tools.get_tool_by_id(tool_id)
|
|
tools_specs = json.dumps(tool.specs, indent=2)
|
|
content = tools_function_calling_generation_template(template, tools_specs)
|
|
|
|
user_message = get_last_user_message(messages)
|
|
prompt = (
|
|
"History:\n"
|
|
+ "\n".join(
|
|
[
|
|
f"{message['role'].upper()}: \"\"\"{message['content']}\"\"\""
|
|
for message in messages[::-1][:4]
|
|
]
|
|
)
|
|
+ f"\nQuery: {user_message}"
|
|
)
|
|
|
|
print(prompt)
|
|
|
|
payload = {
|
|
"model": task_model_id,
|
|
"messages": [
|
|
{"role": "system", "content": content},
|
|
{"role": "user", "content": f"Query: {prompt}"},
|
|
],
|
|
"stream": False,
|
|
}
|
|
|
|
try:
|
|
payload = filter_pipeline(payload, user)
|
|
except Exception as e:
|
|
raise e
|
|
|
|
model = app.state.MODELS[task_model_id]
|
|
|
|
response = None
|
|
try:
|
|
if model["owned_by"] == "ollama":
|
|
response = await generate_ollama_chat_completion(
|
|
OpenAIChatCompletionForm(**payload), user=user
|
|
)
|
|
else:
|
|
response = await generate_openai_chat_completion(payload, user=user)
|
|
|
|
content = None
|
|
|
|
if hasattr(response, "body_iterator"):
|
|
async for chunk in response.body_iterator:
|
|
data = json.loads(chunk.decode("utf-8"))
|
|
content = data["choices"][0]["message"]["content"]
|
|
|
|
# Cleanup any remaining background tasks if necessary
|
|
if response.background is not None:
|
|
await response.background()
|
|
else:
|
|
content = response["choices"][0]["message"]["content"]
|
|
|
|
# Parse the function response
|
|
if content is not None:
|
|
print(f"content: {content}")
|
|
result = json.loads(content)
|
|
print(result)
|
|
|
|
# Call the function
|
|
if "name" in result:
|
|
if tool_id in webui_app.state.TOOLS:
|
|
toolkit_module = webui_app.state.TOOLS[tool_id]
|
|
else:
|
|
toolkit_module = load_toolkit_module_by_id(tool_id)
|
|
webui_app.state.TOOLS[tool_id] = toolkit_module
|
|
|
|
function = getattr(toolkit_module, result["name"])
|
|
function_result = None
|
|
try:
|
|
# Get the signature of the function
|
|
sig = inspect.signature(function)
|
|
# Check if '__user__' is a parameter of the function
|
|
if "__user__" in sig.parameters:
|
|
# Call the function with the '__user__' parameter included
|
|
function_result = function(
|
|
**{
|
|
**result["parameters"],
|
|
"__user__": {
|
|
"id": user.id,
|
|
"email": user.email,
|
|
"name": user.name,
|
|
"role": user.role,
|
|
},
|
|
}
|
|
)
|
|
else:
|
|
# Call the function without modifying the parameters
|
|
function_result = function(**result["parameters"])
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
# Add the function result to the system prompt
|
|
if function_result:
|
|
return function_result
|
|
except Exception as e:
|
|
print(f"Error: {e}")
|
|
|
|
return None
|
|
|
|
|
|
class ChatCompletionMiddleware(BaseHTTPMiddleware):
|
|
async def dispatch(self, request: Request, call_next):
|
|
return_citations = False
|
|
|
|
if request.method == "POST" and (
|
|
"/ollama/api/chat" in request.url.path
|
|
or "/chat/completions" in request.url.path
|
|
):
|
|
log.debug(f"request.url.path: {request.url.path}")
|
|
|
|
# Read the original request body
|
|
body = await request.body()
|
|
# Decode body to string
|
|
body_str = body.decode("utf-8")
|
|
# Parse string to JSON
|
|
data = json.loads(body_str) if body_str else {}
|
|
|
|
user = get_current_user(
|
|
get_http_authorization_cred(request.headers.get("Authorization"))
|
|
)
|
|
|
|
# Remove the citations from the body
|
|
return_citations = data.get("citations", False)
|
|
if "citations" in data:
|
|
del data["citations"]
|
|
|
|
# Set the task model
|
|
task_model_id = data["model"]
|
|
if task_model_id not in app.state.MODELS:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_404_NOT_FOUND,
|
|
detail="Model not found",
|
|
)
|
|
|
|
# Check if the user has a custom task model
|
|
# If the user has a custom task model, use that model
|
|
if app.state.MODELS[task_model_id]["owned_by"] == "ollama":
|
|
if (
|
|
app.state.config.TASK_MODEL
|
|
and app.state.config.TASK_MODEL in app.state.MODELS
|
|
):
|
|
task_model_id = app.state.config.TASK_MODEL
|
|
else:
|
|
if (
|
|
app.state.config.TASK_MODEL_EXTERNAL
|
|
and app.state.config.TASK_MODEL_EXTERNAL in app.state.MODELS
|
|
):
|
|
task_model_id = app.state.config.TASK_MODEL_EXTERNAL
|
|
|
|
prompt = get_last_user_message(data["messages"])
|
|
context = ""
|
|
|
|
# If tool_ids field is present, call the functions
|
|
if "tool_ids" in data:
|
|
print(data["tool_ids"])
|
|
for tool_id in data["tool_ids"]:
|
|
print(tool_id)
|
|
try:
|
|
response = await get_function_call_response(
|
|
messages=data["messages"],
|
|
tool_id=tool_id,
|
|
template=app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE,
|
|
task_model_id=task_model_id,
|
|
user=user,
|
|
)
|
|
|
|
if response:
|
|
context += ("\n" if context != "" else "") + response
|
|
except Exception as e:
|
|
print(f"Error: {e}")
|
|
del data["tool_ids"]
|
|
|
|
print(f"tool_context: {context}")
|
|
|
|
# If docs field is present, generate RAG completions
|
|
if "docs" in data:
|
|
data = {**data}
|
|
rag_context, citations = get_rag_context(
|
|
docs=data["docs"],
|
|
messages=data["messages"],
|
|
embedding_function=rag_app.state.EMBEDDING_FUNCTION,
|
|
k=rag_app.state.config.TOP_K,
|
|
reranking_function=rag_app.state.sentence_transformer_rf,
|
|
r=rag_app.state.config.RELEVANCE_THRESHOLD,
|
|
hybrid_search=rag_app.state.config.ENABLE_RAG_HYBRID_SEARCH,
|
|
)
|
|
|
|
if rag_context:
|
|
context += ("\n" if context != "" else "") + rag_context
|
|
|
|
del data["docs"]
|
|
|
|
log.debug(f"rag_context: {rag_context}, citations: {citations}")
|
|
|
|
if context != "":
|
|
system_prompt = rag_template(
|
|
rag_app.state.config.RAG_TEMPLATE, context, prompt
|
|
)
|
|
|
|
print(system_prompt)
|
|
|
|
data["messages"] = add_or_update_system_message(
|
|
f"\n{system_prompt}", data["messages"]
|
|
)
|
|
|
|
modified_body_bytes = json.dumps(data).encode("utf-8")
|
|
|
|
# Replace the request body with the modified one
|
|
request._body = modified_body_bytes
|
|
# Set custom header to ensure content-length matches new body length
|
|
request.headers.__dict__["_list"] = [
|
|
(b"content-length", str(len(modified_body_bytes)).encode("utf-8")),
|
|
*[
|
|
(k, v)
|
|
for k, v in request.headers.raw
|
|
if k.lower() != b"content-length"
|
|
],
|
|
]
|
|
|
|
response = await call_next(request)
|
|
|
|
if return_citations:
|
|
# Inject the citations into the response
|
|
if isinstance(response, StreamingResponse):
|
|
# If it's a streaming response, inject it as SSE event or NDJSON line
|
|
content_type = response.headers.get("Content-Type")
|
|
if "text/event-stream" in content_type:
|
|
return StreamingResponse(
|
|
self.openai_stream_wrapper(response.body_iterator, citations),
|
|
)
|
|
if "application/x-ndjson" in content_type:
|
|
return StreamingResponse(
|
|
self.ollama_stream_wrapper(response.body_iterator, citations),
|
|
)
|
|
|
|
return response
|
|
|
|
async def _receive(self, body: bytes):
|
|
return {"type": "http.request", "body": body, "more_body": False}
|
|
|
|
async def openai_stream_wrapper(self, original_generator, citations):
|
|
yield f"data: {json.dumps({'citations': citations})}\n\n"
|
|
async for data in original_generator:
|
|
yield data
|
|
|
|
async def ollama_stream_wrapper(self, original_generator, citations):
|
|
yield f"{json.dumps({'citations': citations})}\n"
|
|
async for data in original_generator:
|
|
yield data
|
|
|
|
|
|
app.add_middleware(ChatCompletionMiddleware)
|
|
|
|
|
|
def filter_pipeline(payload, user):
|
|
user = {"id": user.id, "name": user.name, "role": user.role}
|
|
model_id = payload["model"]
|
|
filters = [
|
|
model
|
|
for model in app.state.MODELS.values()
|
|
if "pipeline" in model
|
|
and "type" in model["pipeline"]
|
|
and model["pipeline"]["type"] == "filter"
|
|
and (
|
|
model["pipeline"]["pipelines"] == ["*"]
|
|
or any(
|
|
model_id == target_model_id
|
|
for target_model_id in model["pipeline"]["pipelines"]
|
|
)
|
|
)
|
|
]
|
|
sorted_filters = sorted(filters, key=lambda x: x["pipeline"]["priority"])
|
|
|
|
model = app.state.MODELS[model_id]
|
|
|
|
if "pipeline" in model:
|
|
sorted_filters.append(model)
|
|
|
|
for filter in sorted_filters:
|
|
r = None
|
|
try:
|
|
urlIdx = filter["urlIdx"]
|
|
|
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
|
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
|
|
|
|
if key != "":
|
|
headers = {"Authorization": f"Bearer {key}"}
|
|
r = requests.post(
|
|
f"{url}/{filter['id']}/filter/inlet",
|
|
headers=headers,
|
|
json={
|
|
"user": user,
|
|
"body": payload,
|
|
},
|
|
)
|
|
|
|
r.raise_for_status()
|
|
payload = r.json()
|
|
except Exception as e:
|
|
# Handle connection error here
|
|
print(f"Connection error: {e}")
|
|
|
|
if r is not None:
|
|
try:
|
|
res = r.json()
|
|
except:
|
|
pass
|
|
if "detail" in res:
|
|
raise Exception(r.status_code, res["detail"])
|
|
|
|
else:
|
|
pass
|
|
|
|
if "pipeline" not in app.state.MODELS[model_id]:
|
|
if "chat_id" in payload:
|
|
del payload["chat_id"]
|
|
|
|
if "title" in payload:
|
|
del payload["title"]
|
|
|
|
if "task" in payload:
|
|
del payload["task"]
|
|
|
|
return payload
|
|
|
|
|
|
class PipelineMiddleware(BaseHTTPMiddleware):
|
|
async def dispatch(self, request: Request, call_next):
|
|
if request.method == "POST" and (
|
|
"/ollama/api/chat" in request.url.path
|
|
or "/chat/completions" in request.url.path
|
|
):
|
|
log.debug(f"request.url.path: {request.url.path}")
|
|
|
|
# Read the original request body
|
|
body = await request.body()
|
|
# Decode body to string
|
|
body_str = body.decode("utf-8")
|
|
# Parse string to JSON
|
|
data = json.loads(body_str) if body_str else {}
|
|
|
|
user = get_current_user(
|
|
get_http_authorization_cred(request.headers.get("Authorization"))
|
|
)
|
|
|
|
try:
|
|
data = filter_pipeline(data, user)
|
|
except Exception as e:
|
|
return JSONResponse(
|
|
status_code=e.args[0],
|
|
content={"detail": e.args[1]},
|
|
)
|
|
|
|
modified_body_bytes = json.dumps(data).encode("utf-8")
|
|
# Replace the request body with the modified one
|
|
request._body = modified_body_bytes
|
|
# Set custom header to ensure content-length matches new body length
|
|
request.headers.__dict__["_list"] = [
|
|
(b"content-length", str(len(modified_body_bytes)).encode("utf-8")),
|
|
*[
|
|
(k, v)
|
|
for k, v in request.headers.raw
|
|
if k.lower() != b"content-length"
|
|
],
|
|
]
|
|
|
|
response = await call_next(request)
|
|
return response
|
|
|
|
async def _receive(self, body: bytes):
|
|
return {"type": "http.request", "body": body, "more_body": False}
|
|
|
|
|
|
app.add_middleware(PipelineMiddleware)
|
|
|
|
|
|
app.add_middleware(
|
|
CORSMiddleware,
|
|
allow_origins=origins,
|
|
allow_credentials=True,
|
|
allow_methods=["*"],
|
|
allow_headers=["*"],
|
|
)
|
|
|
|
|
|
@app.middleware("http")
|
|
async def check_url(request: Request, call_next):
|
|
if len(app.state.MODELS) == 0:
|
|
await get_all_models()
|
|
else:
|
|
pass
|
|
|
|
start_time = int(time.time())
|
|
response = await call_next(request)
|
|
process_time = int(time.time()) - start_time
|
|
response.headers["X-Process-Time"] = str(process_time)
|
|
|
|
return response
|
|
|
|
|
|
@app.middleware("http")
|
|
async def update_embedding_function(request: Request, call_next):
|
|
response = await call_next(request)
|
|
if "/embedding/update" in request.url.path:
|
|
webui_app.state.EMBEDDING_FUNCTION = rag_app.state.EMBEDDING_FUNCTION
|
|
return response
|
|
|
|
|
|
app.mount("/ws", socket_app)
|
|
|
|
|
|
app.mount("/ollama", ollama_app)
|
|
app.mount("/openai", openai_app)
|
|
|
|
app.mount("/images/api/v1", images_app)
|
|
app.mount("/audio/api/v1", audio_app)
|
|
app.mount("/rag/api/v1", rag_app)
|
|
|
|
app.mount("/api/v1", webui_app)
|
|
|
|
webui_app.state.EMBEDDING_FUNCTION = rag_app.state.EMBEDDING_FUNCTION
|
|
|
|
|
|
async def get_all_models():
|
|
openai_models = []
|
|
ollama_models = []
|
|
|
|
if app.state.config.ENABLE_OPENAI_API:
|
|
openai_models = await get_openai_models()
|
|
|
|
openai_models = openai_models["data"]
|
|
|
|
if app.state.config.ENABLE_OLLAMA_API:
|
|
ollama_models = await get_ollama_models()
|
|
|
|
ollama_models = [
|
|
{
|
|
"id": model["model"],
|
|
"name": model["name"],
|
|
"object": "model",
|
|
"created": int(time.time()),
|
|
"owned_by": "ollama",
|
|
"ollama": model,
|
|
}
|
|
for model in ollama_models["models"]
|
|
]
|
|
|
|
models = openai_models + ollama_models
|
|
custom_models = Models.get_all_models()
|
|
|
|
for custom_model in custom_models:
|
|
if custom_model.base_model_id == None:
|
|
for model in models:
|
|
if (
|
|
custom_model.id == model["id"]
|
|
or custom_model.id == model["id"].split(":")[0]
|
|
):
|
|
model["name"] = custom_model.name
|
|
model["info"] = custom_model.model_dump()
|
|
else:
|
|
owned_by = "openai"
|
|
for model in models:
|
|
if (
|
|
custom_model.base_model_id == model["id"]
|
|
or custom_model.base_model_id == model["id"].split(":")[0]
|
|
):
|
|
owned_by = model["owned_by"]
|
|
break
|
|
|
|
models.append(
|
|
{
|
|
"id": custom_model.id,
|
|
"name": custom_model.name,
|
|
"object": "model",
|
|
"created": custom_model.created_at,
|
|
"owned_by": owned_by,
|
|
"info": custom_model.model_dump(),
|
|
"preset": True,
|
|
}
|
|
)
|
|
|
|
app.state.MODELS = {model["id"]: model for model in models}
|
|
|
|
webui_app.state.MODELS = app.state.MODELS
|
|
|
|
return models
|
|
|
|
|
|
@app.get("/api/models")
|
|
async def get_models(user=Depends(get_verified_user)):
|
|
models = await get_all_models()
|
|
|
|
# Filter out filter pipelines
|
|
models = [
|
|
model
|
|
for model in models
|
|
if "pipeline" not in model or model["pipeline"].get("type", None) != "filter"
|
|
]
|
|
|
|
if app.state.config.ENABLE_MODEL_FILTER:
|
|
if user.role == "user":
|
|
models = list(
|
|
filter(
|
|
lambda model: model["id"] in app.state.config.MODEL_FILTER_LIST,
|
|
models,
|
|
)
|
|
)
|
|
return {"data": models}
|
|
|
|
return {"data": models}
|
|
|
|
|
|
@app.get("/api/task/config")
|
|
async def get_task_config(user=Depends(get_verified_user)):
|
|
return {
|
|
"TASK_MODEL": app.state.config.TASK_MODEL,
|
|
"TASK_MODEL_EXTERNAL": app.state.config.TASK_MODEL_EXTERNAL,
|
|
"TITLE_GENERATION_PROMPT_TEMPLATE": app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE,
|
|
"SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE": app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE,
|
|
"SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD": app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD,
|
|
"TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE": app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE,
|
|
}
|
|
|
|
|
|
class TaskConfigForm(BaseModel):
|
|
TASK_MODEL: Optional[str]
|
|
TASK_MODEL_EXTERNAL: Optional[str]
|
|
TITLE_GENERATION_PROMPT_TEMPLATE: str
|
|
SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE: str
|
|
SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD: int
|
|
TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE: str
|
|
|
|
|
|
@app.post("/api/task/config/update")
|
|
async def update_task_config(form_data: TaskConfigForm, user=Depends(get_admin_user)):
|
|
app.state.config.TASK_MODEL = form_data.TASK_MODEL
|
|
app.state.config.TASK_MODEL_EXTERNAL = form_data.TASK_MODEL_EXTERNAL
|
|
app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE = (
|
|
form_data.TITLE_GENERATION_PROMPT_TEMPLATE
|
|
)
|
|
app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE = (
|
|
form_data.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE
|
|
)
|
|
app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD = (
|
|
form_data.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD
|
|
)
|
|
app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE = (
|
|
form_data.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE
|
|
)
|
|
|
|
return {
|
|
"TASK_MODEL": app.state.config.TASK_MODEL,
|
|
"TASK_MODEL_EXTERNAL": app.state.config.TASK_MODEL_EXTERNAL,
|
|
"TITLE_GENERATION_PROMPT_TEMPLATE": app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE,
|
|
"SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE": app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE,
|
|
"SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD": app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD,
|
|
"TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE": app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE,
|
|
}
|
|
|
|
|
|
@app.post("/api/task/title/completions")
|
|
async def generate_title(form_data: dict, user=Depends(get_verified_user)):
|
|
print("generate_title")
|
|
|
|
model_id = form_data["model"]
|
|
if model_id not in app.state.MODELS:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_404_NOT_FOUND,
|
|
detail="Model not found",
|
|
)
|
|
|
|
# Check if the user has a custom task model
|
|
# If the user has a custom task model, use that model
|
|
if app.state.MODELS[model_id]["owned_by"] == "ollama":
|
|
if app.state.config.TASK_MODEL:
|
|
task_model_id = app.state.config.TASK_MODEL
|
|
if task_model_id in app.state.MODELS:
|
|
model_id = task_model_id
|
|
else:
|
|
if app.state.config.TASK_MODEL_EXTERNAL:
|
|
task_model_id = app.state.config.TASK_MODEL_EXTERNAL
|
|
if task_model_id in app.state.MODELS:
|
|
model_id = task_model_id
|
|
|
|
print(model_id)
|
|
model = app.state.MODELS[model_id]
|
|
|
|
template = app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE
|
|
|
|
content = title_generation_template(
|
|
template,
|
|
form_data["prompt"],
|
|
{
|
|
"name": user.name,
|
|
"location": user.info.get("location") if user.info else None,
|
|
},
|
|
)
|
|
|
|
payload = {
|
|
"model": model_id,
|
|
"messages": [{"role": "user", "content": content}],
|
|
"stream": False,
|
|
"max_tokens": 50,
|
|
"chat_id": form_data.get("chat_id", None),
|
|
"title": True,
|
|
}
|
|
|
|
log.debug(payload)
|
|
|
|
try:
|
|
payload = filter_pipeline(payload, user)
|
|
except Exception as e:
|
|
return JSONResponse(
|
|
status_code=e.args[0],
|
|
content={"detail": e.args[1]},
|
|
)
|
|
|
|
if model["owned_by"] == "ollama":
|
|
return await generate_ollama_chat_completion(
|
|
OpenAIChatCompletionForm(**payload), user=user
|
|
)
|
|
else:
|
|
return await generate_openai_chat_completion(payload, user=user)
|
|
|
|
|
|
@app.post("/api/task/query/completions")
|
|
async def generate_search_query(form_data: dict, user=Depends(get_verified_user)):
|
|
print("generate_search_query")
|
|
|
|
if len(form_data["prompt"]) < app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
detail=f"Skip search query generation for short prompts (< {app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD} characters)",
|
|
)
|
|
|
|
model_id = form_data["model"]
|
|
if model_id not in app.state.MODELS:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_404_NOT_FOUND,
|
|
detail="Model not found",
|
|
)
|
|
|
|
# Check if the user has a custom task model
|
|
# If the user has a custom task model, use that model
|
|
if app.state.MODELS[model_id]["owned_by"] == "ollama":
|
|
if app.state.config.TASK_MODEL:
|
|
task_model_id = app.state.config.TASK_MODEL
|
|
if task_model_id in app.state.MODELS:
|
|
model_id = task_model_id
|
|
else:
|
|
if app.state.config.TASK_MODEL_EXTERNAL:
|
|
task_model_id = app.state.config.TASK_MODEL_EXTERNAL
|
|
if task_model_id in app.state.MODELS:
|
|
model_id = task_model_id
|
|
|
|
print(model_id)
|
|
model = app.state.MODELS[model_id]
|
|
|
|
template = app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE
|
|
|
|
content = search_query_generation_template(
|
|
template, form_data["prompt"], {"name": user.name}
|
|
)
|
|
|
|
payload = {
|
|
"model": model_id,
|
|
"messages": [{"role": "user", "content": content}],
|
|
"stream": False,
|
|
"max_tokens": 30,
|
|
"task": True,
|
|
}
|
|
|
|
print(payload)
|
|
|
|
try:
|
|
payload = filter_pipeline(payload, user)
|
|
except Exception as e:
|
|
return JSONResponse(
|
|
status_code=e.args[0],
|
|
content={"detail": e.args[1]},
|
|
)
|
|
|
|
if model["owned_by"] == "ollama":
|
|
return await generate_ollama_chat_completion(
|
|
OpenAIChatCompletionForm(**payload), user=user
|
|
)
|
|
else:
|
|
return await generate_openai_chat_completion(payload, user=user)
|
|
|
|
|
|
@app.post("/api/task/emoji/completions")
|
|
async def generate_emoji(form_data: dict, user=Depends(get_verified_user)):
|
|
print("generate_emoji")
|
|
|
|
model_id = form_data["model"]
|
|
if model_id not in app.state.MODELS:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_404_NOT_FOUND,
|
|
detail="Model not found",
|
|
)
|
|
|
|
# Check if the user has a custom task model
|
|
# If the user has a custom task model, use that model
|
|
if app.state.MODELS[model_id]["owned_by"] == "ollama":
|
|
if app.state.config.TASK_MODEL:
|
|
task_model_id = app.state.config.TASK_MODEL
|
|
if task_model_id in app.state.MODELS:
|
|
model_id = task_model_id
|
|
else:
|
|
if app.state.config.TASK_MODEL_EXTERNAL:
|
|
task_model_id = app.state.config.TASK_MODEL_EXTERNAL
|
|
if task_model_id in app.state.MODELS:
|
|
model_id = task_model_id
|
|
|
|
print(model_id)
|
|
model = app.state.MODELS[model_id]
|
|
|
|
template = '''
|
|
Your task is to reflect the speaker's likely facial expression through a fitting emoji. Interpret emotions from the message and reflect their facial expression using fitting, diverse emojis (e.g., 😊, 😢, 😡, 😱).
|
|
|
|
Message: """{{prompt}}"""
|
|
'''
|
|
|
|
content = title_generation_template(
|
|
template,
|
|
form_data["prompt"],
|
|
{
|
|
"name": user.name,
|
|
"location": user.info.get("location") if user.info else None,
|
|
},
|
|
)
|
|
|
|
payload = {
|
|
"model": model_id,
|
|
"messages": [{"role": "user", "content": content}],
|
|
"stream": False,
|
|
"max_tokens": 4,
|
|
"chat_id": form_data.get("chat_id", None),
|
|
"task": True,
|
|
}
|
|
|
|
log.debug(payload)
|
|
|
|
try:
|
|
payload = filter_pipeline(payload, user)
|
|
except Exception as e:
|
|
return JSONResponse(
|
|
status_code=e.args[0],
|
|
content={"detail": e.args[1]},
|
|
)
|
|
|
|
if model["owned_by"] == "ollama":
|
|
return await generate_ollama_chat_completion(
|
|
OpenAIChatCompletionForm(**payload), user=user
|
|
)
|
|
else:
|
|
return await generate_openai_chat_completion(payload, user=user)
|
|
|
|
|
|
@app.post("/api/task/tools/completions")
|
|
async def get_tools_function_calling(form_data: dict, user=Depends(get_verified_user)):
|
|
print("get_tools_function_calling")
|
|
|
|
model_id = form_data["model"]
|
|
if model_id not in app.state.MODELS:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_404_NOT_FOUND,
|
|
detail="Model not found",
|
|
)
|
|
|
|
# Check if the user has a custom task model
|
|
# If the user has a custom task model, use that model
|
|
if app.state.MODELS[model_id]["owned_by"] == "ollama":
|
|
if app.state.config.TASK_MODEL:
|
|
task_model_id = app.state.config.TASK_MODEL
|
|
if task_model_id in app.state.MODELS:
|
|
model_id = task_model_id
|
|
else:
|
|
if app.state.config.TASK_MODEL_EXTERNAL:
|
|
task_model_id = app.state.config.TASK_MODEL_EXTERNAL
|
|
if task_model_id in app.state.MODELS:
|
|
model_id = task_model_id
|
|
|
|
print(model_id)
|
|
template = app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE
|
|
|
|
try:
|
|
context = await get_function_call_response(
|
|
form_data["messages"], form_data["tool_id"], template, model_id, user
|
|
)
|
|
return context
|
|
except Exception as e:
|
|
return JSONResponse(
|
|
status_code=e.args[0],
|
|
content={"detail": e.args[1]},
|
|
)
|
|
|
|
|
|
@app.post("/api/chat/completions")
|
|
async def generate_chat_completions(form_data: dict, user=Depends(get_verified_user)):
|
|
model_id = form_data["model"]
|
|
if model_id not in app.state.MODELS:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_404_NOT_FOUND,
|
|
detail="Model not found",
|
|
)
|
|
|
|
model = app.state.MODELS[model_id]
|
|
print(model)
|
|
|
|
if model["owned_by"] == "ollama":
|
|
return await generate_ollama_chat_completion(
|
|
OpenAIChatCompletionForm(**form_data), user=user
|
|
)
|
|
else:
|
|
return await generate_openai_chat_completion(form_data, user=user)
|
|
|
|
|
|
@app.post("/api/chat/completed")
|
|
async def chat_completed(form_data: dict, user=Depends(get_verified_user)):
|
|
data = form_data
|
|
model_id = data["model"]
|
|
|
|
filters = [
|
|
model
|
|
for model in app.state.MODELS.values()
|
|
if "pipeline" in model
|
|
and "type" in model["pipeline"]
|
|
and model["pipeline"]["type"] == "filter"
|
|
and (
|
|
model["pipeline"]["pipelines"] == ["*"]
|
|
or any(
|
|
model_id == target_model_id
|
|
for target_model_id in model["pipeline"]["pipelines"]
|
|
)
|
|
)
|
|
]
|
|
sorted_filters = sorted(filters, key=lambda x: x["pipeline"]["priority"])
|
|
|
|
print(model_id)
|
|
|
|
if model_id in app.state.MODELS:
|
|
model = app.state.MODELS[model_id]
|
|
if "pipeline" in model:
|
|
sorted_filters = [model] + sorted_filters
|
|
|
|
for filter in sorted_filters:
|
|
r = None
|
|
try:
|
|
urlIdx = filter["urlIdx"]
|
|
|
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
|
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
|
|
|
|
if key != "":
|
|
headers = {"Authorization": f"Bearer {key}"}
|
|
r = requests.post(
|
|
f"{url}/{filter['id']}/filter/outlet",
|
|
headers=headers,
|
|
json={
|
|
"user": {"id": user.id, "name": user.name, "role": user.role},
|
|
"body": data,
|
|
},
|
|
)
|
|
|
|
r.raise_for_status()
|
|
data = r.json()
|
|
except Exception as e:
|
|
# Handle connection error here
|
|
print(f"Connection error: {e}")
|
|
|
|
if r is not None:
|
|
try:
|
|
res = r.json()
|
|
if "detail" in res:
|
|
return JSONResponse(
|
|
status_code=r.status_code,
|
|
content=res,
|
|
)
|
|
except:
|
|
pass
|
|
|
|
else:
|
|
pass
|
|
|
|
return data
|
|
|
|
|
|
@app.get("/api/pipelines/list")
|
|
async def get_pipelines_list(user=Depends(get_admin_user)):
|
|
responses = await get_openai_models(raw=True)
|
|
|
|
print(responses)
|
|
urlIdxs = [
|
|
idx
|
|
for idx, response in enumerate(responses)
|
|
if response != None and "pipelines" in response
|
|
]
|
|
|
|
return {
|
|
"data": [
|
|
{
|
|
"url": openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx],
|
|
"idx": urlIdx,
|
|
}
|
|
for urlIdx in urlIdxs
|
|
]
|
|
}
|
|
|
|
|
|
@app.post("/api/pipelines/upload")
|
|
async def upload_pipeline(
|
|
urlIdx: int = Form(...), file: UploadFile = File(...), user=Depends(get_admin_user)
|
|
):
|
|
print("upload_pipeline", urlIdx, file.filename)
|
|
# Check if the uploaded file is a python file
|
|
if not file.filename.endswith(".py"):
|
|
raise HTTPException(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
detail="Only Python (.py) files are allowed.",
|
|
)
|
|
|
|
upload_folder = f"{CACHE_DIR}/pipelines"
|
|
os.makedirs(upload_folder, exist_ok=True)
|
|
file_path = os.path.join(upload_folder, file.filename)
|
|
|
|
try:
|
|
# Save the uploaded file
|
|
with open(file_path, "wb") as buffer:
|
|
shutil.copyfileobj(file.file, buffer)
|
|
|
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
|
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
|
|
|
|
headers = {"Authorization": f"Bearer {key}"}
|
|
|
|
with open(file_path, "rb") as f:
|
|
files = {"file": f}
|
|
r = requests.post(f"{url}/pipelines/upload", headers=headers, files=files)
|
|
|
|
r.raise_for_status()
|
|
data = r.json()
|
|
|
|
return {**data}
|
|
except Exception as e:
|
|
# Handle connection error here
|
|
print(f"Connection error: {e}")
|
|
|
|
detail = "Pipeline not found"
|
|
if r is not None:
|
|
try:
|
|
res = r.json()
|
|
if "detail" in res:
|
|
detail = res["detail"]
|
|
except:
|
|
pass
|
|
|
|
raise HTTPException(
|
|
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND),
|
|
detail=detail,
|
|
)
|
|
finally:
|
|
# Ensure the file is deleted after the upload is completed or on failure
|
|
if os.path.exists(file_path):
|
|
os.remove(file_path)
|
|
|
|
|
|
class AddPipelineForm(BaseModel):
|
|
url: str
|
|
urlIdx: int
|
|
|
|
|
|
@app.post("/api/pipelines/add")
|
|
async def add_pipeline(form_data: AddPipelineForm, user=Depends(get_admin_user)):
|
|
|
|
r = None
|
|
try:
|
|
urlIdx = form_data.urlIdx
|
|
|
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
|
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
|
|
|
|
headers = {"Authorization": f"Bearer {key}"}
|
|
r = requests.post(
|
|
f"{url}/pipelines/add", headers=headers, json={"url": form_data.url}
|
|
)
|
|
|
|
r.raise_for_status()
|
|
data = r.json()
|
|
|
|
return {**data}
|
|
except Exception as e:
|
|
# Handle connection error here
|
|
print(f"Connection error: {e}")
|
|
|
|
detail = "Pipeline not found"
|
|
if r is not None:
|
|
try:
|
|
res = r.json()
|
|
if "detail" in res:
|
|
detail = res["detail"]
|
|
except:
|
|
pass
|
|
|
|
raise HTTPException(
|
|
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND),
|
|
detail=detail,
|
|
)
|
|
|
|
|
|
class DeletePipelineForm(BaseModel):
|
|
id: str
|
|
urlIdx: int
|
|
|
|
|
|
@app.delete("/api/pipelines/delete")
|
|
async def delete_pipeline(form_data: DeletePipelineForm, user=Depends(get_admin_user)):
|
|
|
|
r = None
|
|
try:
|
|
urlIdx = form_data.urlIdx
|
|
|
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
|
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
|
|
|
|
headers = {"Authorization": f"Bearer {key}"}
|
|
r = requests.delete(
|
|
f"{url}/pipelines/delete", headers=headers, json={"id": form_data.id}
|
|
)
|
|
|
|
r.raise_for_status()
|
|
data = r.json()
|
|
|
|
return {**data}
|
|
except Exception as e:
|
|
# Handle connection error here
|
|
print(f"Connection error: {e}")
|
|
|
|
detail = "Pipeline not found"
|
|
if r is not None:
|
|
try:
|
|
res = r.json()
|
|
if "detail" in res:
|
|
detail = res["detail"]
|
|
except:
|
|
pass
|
|
|
|
raise HTTPException(
|
|
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND),
|
|
detail=detail,
|
|
)
|
|
|
|
|
|
@app.get("/api/pipelines")
|
|
async def get_pipelines(urlIdx: Optional[int] = None, user=Depends(get_admin_user)):
|
|
r = None
|
|
try:
|
|
urlIdx
|
|
|
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
|
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
|
|
|
|
headers = {"Authorization": f"Bearer {key}"}
|
|
r = requests.get(f"{url}/pipelines", headers=headers)
|
|
|
|
r.raise_for_status()
|
|
data = r.json()
|
|
|
|
return {**data}
|
|
except Exception as e:
|
|
# Handle connection error here
|
|
print(f"Connection error: {e}")
|
|
|
|
detail = "Pipeline not found"
|
|
if r is not None:
|
|
try:
|
|
res = r.json()
|
|
if "detail" in res:
|
|
detail = res["detail"]
|
|
except:
|
|
pass
|
|
|
|
raise HTTPException(
|
|
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND),
|
|
detail=detail,
|
|
)
|
|
|
|
|
|
@app.get("/api/pipelines/{pipeline_id}/valves")
|
|
async def get_pipeline_valves(
|
|
urlIdx: Optional[int], pipeline_id: str, user=Depends(get_admin_user)
|
|
):
|
|
models = await get_all_models()
|
|
r = None
|
|
try:
|
|
|
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
|
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
|
|
|
|
headers = {"Authorization": f"Bearer {key}"}
|
|
r = requests.get(f"{url}/{pipeline_id}/valves", headers=headers)
|
|
|
|
r.raise_for_status()
|
|
data = r.json()
|
|
|
|
return {**data}
|
|
except Exception as e:
|
|
# Handle connection error here
|
|
print(f"Connection error: {e}")
|
|
|
|
detail = "Pipeline not found"
|
|
|
|
if r is not None:
|
|
try:
|
|
res = r.json()
|
|
if "detail" in res:
|
|
detail = res["detail"]
|
|
except:
|
|
pass
|
|
|
|
raise HTTPException(
|
|
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND),
|
|
detail=detail,
|
|
)
|
|
|
|
|
|
@app.get("/api/pipelines/{pipeline_id}/valves/spec")
|
|
async def get_pipeline_valves_spec(
|
|
urlIdx: Optional[int], pipeline_id: str, user=Depends(get_admin_user)
|
|
):
|
|
models = await get_all_models()
|
|
|
|
r = None
|
|
try:
|
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
|
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
|
|
|
|
headers = {"Authorization": f"Bearer {key}"}
|
|
r = requests.get(f"{url}/{pipeline_id}/valves/spec", headers=headers)
|
|
|
|
r.raise_for_status()
|
|
data = r.json()
|
|
|
|
return {**data}
|
|
except Exception as e:
|
|
# Handle connection error here
|
|
print(f"Connection error: {e}")
|
|
|
|
detail = "Pipeline not found"
|
|
if r is not None:
|
|
try:
|
|
res = r.json()
|
|
if "detail" in res:
|
|
detail = res["detail"]
|
|
except:
|
|
pass
|
|
|
|
raise HTTPException(
|
|
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND),
|
|
detail=detail,
|
|
)
|
|
|
|
|
|
@app.post("/api/pipelines/{pipeline_id}/valves/update")
|
|
async def update_pipeline_valves(
|
|
urlIdx: Optional[int],
|
|
pipeline_id: str,
|
|
form_data: dict,
|
|
user=Depends(get_admin_user),
|
|
):
|
|
models = await get_all_models()
|
|
|
|
r = None
|
|
try:
|
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
|
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
|
|
|
|
headers = {"Authorization": f"Bearer {key}"}
|
|
r = requests.post(
|
|
f"{url}/{pipeline_id}/valves/update",
|
|
headers=headers,
|
|
json={**form_data},
|
|
)
|
|
|
|
r.raise_for_status()
|
|
data = r.json()
|
|
|
|
return {**data}
|
|
except Exception as e:
|
|
# Handle connection error here
|
|
print(f"Connection error: {e}")
|
|
|
|
detail = "Pipeline not found"
|
|
|
|
if r is not None:
|
|
try:
|
|
res = r.json()
|
|
if "detail" in res:
|
|
detail = res["detail"]
|
|
except:
|
|
pass
|
|
|
|
raise HTTPException(
|
|
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND),
|
|
detail=detail,
|
|
)
|
|
|
|
|
|
@app.get("/api/config")
|
|
async def get_app_config():
|
|
# Checking and Handling the Absence of 'ui' in CONFIG_DATA
|
|
|
|
default_locale = "en-US"
|
|
if "ui" in CONFIG_DATA:
|
|
default_locale = CONFIG_DATA["ui"].get("default_locale", "en-US")
|
|
|
|
# The Rest of the Function Now Uses the Variables Defined Above
|
|
return {
|
|
"status": True,
|
|
"name": WEBUI_NAME,
|
|
"version": VERSION,
|
|
"default_locale": default_locale,
|
|
"default_models": webui_app.state.config.DEFAULT_MODELS,
|
|
"default_prompt_suggestions": webui_app.state.config.DEFAULT_PROMPT_SUGGESTIONS,
|
|
"features": {
|
|
"auth": WEBUI_AUTH,
|
|
"auth_trusted_header": bool(webui_app.state.AUTH_TRUSTED_EMAIL_HEADER),
|
|
"enable_signup": webui_app.state.config.ENABLE_SIGNUP,
|
|
"enable_web_search": rag_app.state.config.ENABLE_RAG_WEB_SEARCH,
|
|
"enable_image_generation": images_app.state.config.ENABLED,
|
|
"enable_community_sharing": webui_app.state.config.ENABLE_COMMUNITY_SHARING,
|
|
"enable_admin_export": ENABLE_ADMIN_EXPORT,
|
|
},
|
|
"audio": {
|
|
"tts": {
|
|
"engine": audio_app.state.config.TTS_ENGINE,
|
|
"voice": audio_app.state.config.TTS_VOICE,
|
|
},
|
|
"stt": {
|
|
"engine": audio_app.state.config.STT_ENGINE,
|
|
},
|
|
},
|
|
}
|
|
|
|
|
|
@app.get("/api/config/model/filter")
|
|
async def get_model_filter_config(user=Depends(get_admin_user)):
|
|
return {
|
|
"enabled": app.state.config.ENABLE_MODEL_FILTER,
|
|
"models": app.state.config.MODEL_FILTER_LIST,
|
|
}
|
|
|
|
|
|
class ModelFilterConfigForm(BaseModel):
|
|
enabled: bool
|
|
models: List[str]
|
|
|
|
|
|
@app.post("/api/config/model/filter")
|
|
async def update_model_filter_config(
|
|
form_data: ModelFilterConfigForm, user=Depends(get_admin_user)
|
|
):
|
|
app.state.config.ENABLE_MODEL_FILTER = form_data.enabled
|
|
app.state.config.MODEL_FILTER_LIST = form_data.models
|
|
|
|
return {
|
|
"enabled": app.state.config.ENABLE_MODEL_FILTER,
|
|
"models": app.state.config.MODEL_FILTER_LIST,
|
|
}
|
|
|
|
|
|
@app.get("/api/webhook")
|
|
async def get_webhook_url(user=Depends(get_admin_user)):
|
|
return {
|
|
"url": app.state.config.WEBHOOK_URL,
|
|
}
|
|
|
|
|
|
class UrlForm(BaseModel):
|
|
url: str
|
|
|
|
|
|
@app.post("/api/webhook")
|
|
async def update_webhook_url(form_data: UrlForm, user=Depends(get_admin_user)):
|
|
app.state.config.WEBHOOK_URL = form_data.url
|
|
webui_app.state.WEBHOOK_URL = app.state.config.WEBHOOK_URL
|
|
return {"url": app.state.config.WEBHOOK_URL}
|
|
|
|
|
|
@app.get("/api/version")
|
|
async def get_app_config():
|
|
return {
|
|
"version": VERSION,
|
|
}
|
|
|
|
|
|
@app.get("/api/changelog")
|
|
async def get_app_changelog():
|
|
return {key: CHANGELOG[key] for idx, key in enumerate(CHANGELOG) if idx < 5}
|
|
|
|
|
|
@app.get("/api/version/updates")
|
|
async def get_app_latest_release_version():
|
|
try:
|
|
async with aiohttp.ClientSession(trust_env=True) as session:
|
|
async with session.get(
|
|
"https://api.github.com/repos/open-webui/open-webui/releases/latest"
|
|
) as response:
|
|
response.raise_for_status()
|
|
data = await response.json()
|
|
latest_version = data["tag_name"]
|
|
|
|
return {"current": VERSION, "latest": latest_version[1:]}
|
|
except aiohttp.ClientError as e:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_503_SERVICE_UNAVAILABLE,
|
|
detail=ERROR_MESSAGES.RATE_LIMIT_EXCEEDED,
|
|
)
|
|
|
|
|
|
@app.get("/manifest.json")
|
|
async def get_manifest_json():
|
|
return {
|
|
"name": WEBUI_NAME,
|
|
"short_name": WEBUI_NAME,
|
|
"start_url": "/",
|
|
"display": "standalone",
|
|
"background_color": "#343541",
|
|
"theme_color": "#343541",
|
|
"orientation": "portrait-primary",
|
|
"icons": [{"src": "/static/logo.png", "type": "image/png", "sizes": "500x500"}],
|
|
}
|
|
|
|
|
|
@app.get("/opensearch.xml")
|
|
async def get_opensearch_xml():
|
|
xml_content = rf"""
|
|
<OpenSearchDescription xmlns="http://a9.com/-/spec/opensearch/1.1/" xmlns:moz="http://www.mozilla.org/2006/browser/search/">
|
|
<ShortName>{WEBUI_NAME}</ShortName>
|
|
<Description>Search {WEBUI_NAME}</Description>
|
|
<InputEncoding>UTF-8</InputEncoding>
|
|
<Image width="16" height="16" type="image/x-icon">{WEBUI_URL}/favicon.png</Image>
|
|
<Url type="text/html" method="get" template="{WEBUI_URL}/?q={"{searchTerms}"}"/>
|
|
<moz:SearchForm>{WEBUI_URL}</moz:SearchForm>
|
|
</OpenSearchDescription>
|
|
"""
|
|
return Response(content=xml_content, media_type="application/xml")
|
|
|
|
|
|
@app.get("/health")
|
|
async def healthcheck():
|
|
return {"status": True}
|
|
|
|
|
|
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static")
|
|
app.mount("/cache", StaticFiles(directory=CACHE_DIR), name="cache")
|
|
|
|
if os.path.exists(FRONTEND_BUILD_DIR):
|
|
mimetypes.add_type("text/javascript", ".js")
|
|
app.mount(
|
|
"/",
|
|
SPAStaticFiles(directory=FRONTEND_BUILD_DIR, html=True),
|
|
name="spa-static-files",
|
|
)
|
|
else:
|
|
log.warning(
|
|
f"Frontend build directory not found at '{FRONTEND_BUILD_DIR}'. Serving API only."
|
|
)
|