mirror of
https://github.com/open-webui/open-webui
synced 2025-02-23 13:51:07 +00:00
237 lines
8.0 KiB
Python
237 lines
8.0 KiB
Python
from open_webui.utils.task import prompt_template, prompt_variables_template
|
|
from open_webui.utils.misc import (
|
|
add_or_update_system_message,
|
|
)
|
|
|
|
from typing import Callable, Optional
|
|
import json
|
|
|
|
|
|
# inplace function: form_data is modified
|
|
def apply_model_system_prompt_to_body(
|
|
params: dict, form_data: dict, metadata: Optional[dict] = None, user=None
|
|
) -> dict:
|
|
system = params.get("system", None)
|
|
if not system:
|
|
return form_data
|
|
|
|
# Metadata (WebUI Usage)
|
|
if metadata:
|
|
variables = metadata.get("variables", {})
|
|
if variables:
|
|
system = prompt_variables_template(system, variables)
|
|
|
|
# Legacy (API Usage)
|
|
if user:
|
|
template_params = {
|
|
"user_name": user.name,
|
|
"user_location": user.info.get("location") if user.info else None,
|
|
}
|
|
else:
|
|
template_params = {}
|
|
|
|
system = prompt_template(system, **template_params)
|
|
|
|
form_data["messages"] = add_or_update_system_message(
|
|
system, form_data.get("messages", [])
|
|
)
|
|
return form_data
|
|
|
|
|
|
# inplace function: form_data is modified
|
|
def apply_model_params_to_body(
|
|
params: dict, form_data: dict, mappings: dict[str, Callable]
|
|
) -> dict:
|
|
if not params:
|
|
return form_data
|
|
|
|
for key, cast_func in mappings.items():
|
|
if (value := params.get(key)) is not None:
|
|
form_data[key] = cast_func(value)
|
|
|
|
return form_data
|
|
|
|
|
|
# inplace function: form_data is modified
|
|
def apply_model_params_to_body_openai(params: dict, form_data: dict) -> dict:
|
|
mappings = {
|
|
"temperature": float,
|
|
"top_p": float,
|
|
"max_tokens": int,
|
|
"frequency_penalty": float,
|
|
"reasoning_effort": str,
|
|
"seed": lambda x: x,
|
|
"stop": lambda x: [bytes(s, "utf-8").decode("unicode_escape") for s in x],
|
|
}
|
|
return apply_model_params_to_body(params, form_data, mappings)
|
|
|
|
|
|
def apply_model_params_to_body_ollama(params: dict, form_data: dict) -> dict:
|
|
# Convert OpenAI parameter names to Ollama parameter names if needed.
|
|
name_differences = {
|
|
"max_tokens": "num_predict",
|
|
}
|
|
|
|
for key, value in name_differences.items():
|
|
if (param := params.get(key, None)) is not None:
|
|
# Copy the parameter to new name then delete it, to prevent Ollama warning of invalid option provided
|
|
params[value] = params[key]
|
|
del params[key]
|
|
|
|
# See https://github.com/ollama/ollama/blob/main/docs/api.md#request-8
|
|
mappings = {
|
|
"temperature": float,
|
|
"top_p": float,
|
|
"seed": lambda x: x,
|
|
"mirostat": int,
|
|
"mirostat_eta": float,
|
|
"mirostat_tau": float,
|
|
"num_ctx": int,
|
|
"num_batch": int,
|
|
"num_keep": int,
|
|
"num_predict": int,
|
|
"repeat_last_n": int,
|
|
"top_k": int,
|
|
"min_p": float,
|
|
"typical_p": float,
|
|
"repeat_penalty": float,
|
|
"presence_penalty": float,
|
|
"frequency_penalty": float,
|
|
"penalize_newline": bool,
|
|
"stop": lambda x: [bytes(s, "utf-8").decode("unicode_escape") for s in x],
|
|
"numa": bool,
|
|
"num_gpu": int,
|
|
"main_gpu": int,
|
|
"low_vram": bool,
|
|
"vocab_only": bool,
|
|
"use_mmap": bool,
|
|
"use_mlock": bool,
|
|
"num_thread": int,
|
|
}
|
|
|
|
return apply_model_params_to_body(params, form_data, mappings)
|
|
|
|
|
|
def convert_messages_openai_to_ollama(messages: list[dict]) -> list[dict]:
|
|
ollama_messages = []
|
|
|
|
for message in messages:
|
|
# Initialize the new message structure with the role
|
|
new_message = {"role": message["role"]}
|
|
|
|
content = message.get("content", [])
|
|
tool_calls = message.get("tool_calls", None)
|
|
tool_call_id = message.get("tool_call_id", None)
|
|
|
|
# Check if the content is a string (just a simple message)
|
|
if isinstance(content, str):
|
|
# If the content is a string, it's pure text
|
|
new_message["content"] = content
|
|
|
|
# If message is a tool call, add the tool call id to the message
|
|
if tool_call_id:
|
|
new_message["tool_call_id"] = tool_call_id
|
|
|
|
elif tool_calls:
|
|
# If tool calls are present, add them to the message
|
|
ollama_tool_calls = []
|
|
for tool_call in tool_calls:
|
|
ollama_tool_call = {
|
|
"index": tool_call.get("index", 0),
|
|
"id": tool_call.get("id", None),
|
|
"function": {
|
|
"name": tool_call.get("function", {}).get("name", ""),
|
|
"arguments": json.loads(
|
|
tool_call.get("function", {}).get("arguments", {})
|
|
),
|
|
},
|
|
}
|
|
ollama_tool_calls.append(ollama_tool_call)
|
|
new_message["tool_calls"] = ollama_tool_calls
|
|
|
|
# Put the content to empty string (Ollama requires an empty string for tool calls)
|
|
new_message["content"] = ""
|
|
|
|
else:
|
|
# Otherwise, assume the content is a list of dicts, e.g., text followed by an image URL
|
|
content_text = ""
|
|
images = []
|
|
|
|
# Iterate through the list of content items
|
|
for item in content:
|
|
# Check if it's a text type
|
|
if item.get("type") == "text":
|
|
content_text += item.get("text", "")
|
|
|
|
# Check if it's an image URL type
|
|
elif item.get("type") == "image_url":
|
|
img_url = item.get("image_url", {}).get("url", "")
|
|
if img_url:
|
|
# If the image url starts with data:, it's a base64 image and should be trimmed
|
|
if img_url.startswith("data:"):
|
|
img_url = img_url.split(",")[-1]
|
|
images.append(img_url)
|
|
|
|
# Add content text (if any)
|
|
if content_text:
|
|
new_message["content"] = content_text.strip()
|
|
|
|
# Add images (if any)
|
|
if images:
|
|
new_message["images"] = images
|
|
|
|
# Append the new formatted message to the result
|
|
ollama_messages.append(new_message)
|
|
|
|
return ollama_messages
|
|
|
|
|
|
def convert_payload_openai_to_ollama(openai_payload: dict) -> dict:
|
|
"""
|
|
Converts a payload formatted for OpenAI's API to be compatible with Ollama's API endpoint for chat completions.
|
|
|
|
Args:
|
|
openai_payload (dict): The payload originally designed for OpenAI API usage.
|
|
|
|
Returns:
|
|
dict: A modified payload compatible with the Ollama API.
|
|
"""
|
|
ollama_payload = {}
|
|
|
|
# Mapping basic model and message details
|
|
ollama_payload["model"] = openai_payload.get("model")
|
|
ollama_payload["messages"] = convert_messages_openai_to_ollama(
|
|
openai_payload.get("messages")
|
|
)
|
|
ollama_payload["stream"] = openai_payload.get("stream", False)
|
|
|
|
if "tools" in openai_payload:
|
|
ollama_payload["tools"] = openai_payload["tools"]
|
|
|
|
if "format" in openai_payload:
|
|
ollama_payload["format"] = openai_payload["format"]
|
|
|
|
# If there are advanced parameters in the payload, format them in Ollama's options field
|
|
if openai_payload.get("options"):
|
|
ollama_payload["options"] = openai_payload["options"]
|
|
ollama_options = openai_payload["options"]
|
|
|
|
# Re-Mapping OpenAI's `max_tokens` -> Ollama's `num_predict`
|
|
if "max_tokens" in ollama_options:
|
|
ollama_options["num_predict"] = ollama_options["max_tokens"]
|
|
del ollama_options[
|
|
"max_tokens"
|
|
] # To prevent Ollama warning of invalid option provided
|
|
|
|
# Ollama lacks a "system" prompt option. It has to be provided as a direct parameter, so we copy it down.
|
|
if "system" in ollama_options:
|
|
ollama_payload["system"] = ollama_options["system"]
|
|
del ollama_options[
|
|
"system"
|
|
] # To prevent Ollama warning of invalid option provided
|
|
|
|
if "metadata" in openai_payload:
|
|
ollama_payload["metadata"] = openai_payload["metadata"]
|
|
|
|
return ollama_payload
|