mirror of
https://github.com/open-webui/open-webui
synced 2024-12-29 07:12:07 +00:00
533 lines
16 KiB
Python
533 lines
16 KiB
Python
import logging
|
|
import os
|
|
import uuid
|
|
from typing import Optional, Union
|
|
|
|
import asyncio
|
|
import requests
|
|
|
|
from huggingface_hub import snapshot_download
|
|
from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
|
|
from langchain_community.retrievers import BM25Retriever
|
|
from langchain_core.documents import Document
|
|
|
|
from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT
|
|
from open_webui.utils.misc import get_last_user_message
|
|
|
|
from open_webui.env import SRC_LOG_LEVELS
|
|
|
|
log = logging.getLogger(__name__)
|
|
log.setLevel(SRC_LOG_LEVELS["RAG"])
|
|
|
|
|
|
from typing import Any
|
|
|
|
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
|
from langchain_core.retrievers import BaseRetriever
|
|
|
|
|
|
class VectorSearchRetriever(BaseRetriever):
|
|
collection_name: Any
|
|
embedding_function: Any
|
|
top_k: int
|
|
|
|
def _get_relevant_documents(
|
|
self,
|
|
query: str,
|
|
*,
|
|
run_manager: CallbackManagerForRetrieverRun,
|
|
) -> list[Document]:
|
|
result = VECTOR_DB_CLIENT.search(
|
|
collection_name=self.collection_name,
|
|
vectors=[self.embedding_function(query)],
|
|
limit=self.top_k,
|
|
)
|
|
|
|
ids = result.ids[0]
|
|
metadatas = result.metadatas[0]
|
|
documents = result.documents[0]
|
|
|
|
results = []
|
|
for idx in range(len(ids)):
|
|
results.append(
|
|
Document(
|
|
metadata=metadatas[idx],
|
|
page_content=documents[idx],
|
|
)
|
|
)
|
|
return results
|
|
|
|
|
|
def query_doc(
|
|
collection_name: str,
|
|
query_embedding: list[float],
|
|
k: int,
|
|
):
|
|
try:
|
|
result = VECTOR_DB_CLIENT.search(
|
|
collection_name=collection_name,
|
|
vectors=[query_embedding],
|
|
limit=k,
|
|
)
|
|
|
|
log.info(f"query_doc:result {result.ids} {result.metadatas}")
|
|
return result
|
|
except Exception as e:
|
|
print(e)
|
|
raise e
|
|
|
|
|
|
def query_doc_with_hybrid_search(
|
|
collection_name: str,
|
|
query: str,
|
|
embedding_function,
|
|
k: int,
|
|
reranking_function,
|
|
r: float,
|
|
) -> dict:
|
|
try:
|
|
result = VECTOR_DB_CLIENT.get(collection_name=collection_name)
|
|
|
|
bm25_retriever = BM25Retriever.from_texts(
|
|
texts=result.documents[0],
|
|
metadatas=result.metadatas[0],
|
|
)
|
|
bm25_retriever.k = k
|
|
|
|
vector_search_retriever = VectorSearchRetriever(
|
|
collection_name=collection_name,
|
|
embedding_function=embedding_function,
|
|
top_k=k,
|
|
)
|
|
|
|
ensemble_retriever = EnsembleRetriever(
|
|
retrievers=[bm25_retriever, vector_search_retriever], weights=[0.5, 0.5]
|
|
)
|
|
compressor = RerankCompressor(
|
|
embedding_function=embedding_function,
|
|
top_n=k,
|
|
reranking_function=reranking_function,
|
|
r_score=r,
|
|
)
|
|
|
|
compression_retriever = ContextualCompressionRetriever(
|
|
base_compressor=compressor, base_retriever=ensemble_retriever
|
|
)
|
|
|
|
result = compression_retriever.invoke(query)
|
|
result = {
|
|
"distances": [[d.metadata.get("score") for d in result]],
|
|
"documents": [[d.page_content for d in result]],
|
|
"metadatas": [[d.metadata for d in result]],
|
|
}
|
|
|
|
log.info(
|
|
"query_doc_with_hybrid_search:result "
|
|
+ f'{result["metadatas"]} {result["distances"]}'
|
|
)
|
|
return result
|
|
except Exception as e:
|
|
raise e
|
|
|
|
|
|
def merge_and_sort_query_results(
|
|
query_results: list[dict], k: int, reverse: bool = False
|
|
) -> list[dict]:
|
|
# Initialize lists to store combined data
|
|
combined_distances = []
|
|
combined_documents = []
|
|
combined_metadatas = []
|
|
|
|
for data in query_results:
|
|
combined_distances.extend(data["distances"][0])
|
|
combined_documents.extend(data["documents"][0])
|
|
combined_metadatas.extend(data["metadatas"][0])
|
|
|
|
# Create a list of tuples (distance, document, metadata)
|
|
combined = list(zip(combined_distances, combined_documents, combined_metadatas))
|
|
|
|
# Sort the list based on distances
|
|
combined.sort(key=lambda x: x[0], reverse=reverse)
|
|
|
|
# We don't have anything :-(
|
|
if not combined:
|
|
sorted_distances = []
|
|
sorted_documents = []
|
|
sorted_metadatas = []
|
|
else:
|
|
# Unzip the sorted list
|
|
sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
|
|
|
|
# Slicing the lists to include only k elements
|
|
sorted_distances = list(sorted_distances)[:k]
|
|
sorted_documents = list(sorted_documents)[:k]
|
|
sorted_metadatas = list(sorted_metadatas)[:k]
|
|
|
|
# Create the output dictionary
|
|
result = {
|
|
"distances": [sorted_distances],
|
|
"documents": [sorted_documents],
|
|
"metadatas": [sorted_metadatas],
|
|
}
|
|
|
|
return result
|
|
|
|
|
|
def query_collection(
|
|
collection_names: list[str],
|
|
queries: list[str],
|
|
embedding_function,
|
|
k: int,
|
|
) -> dict:
|
|
results = []
|
|
for query in queries:
|
|
query_embedding = embedding_function(query)
|
|
for collection_name in collection_names:
|
|
if collection_name:
|
|
try:
|
|
result = query_doc(
|
|
collection_name=collection_name,
|
|
k=k,
|
|
query_embedding=query_embedding,
|
|
)
|
|
if result is not None:
|
|
results.append(result.model_dump())
|
|
except Exception as e:
|
|
log.exception(f"Error when querying the collection: {e}")
|
|
else:
|
|
pass
|
|
|
|
return merge_and_sort_query_results(results, k=k)
|
|
|
|
|
|
def query_collection_with_hybrid_search(
|
|
collection_names: list[str],
|
|
queries: list[str],
|
|
embedding_function,
|
|
k: int,
|
|
reranking_function,
|
|
r: float,
|
|
) -> dict:
|
|
results = []
|
|
error = False
|
|
for collection_name in collection_names:
|
|
try:
|
|
for query in queries:
|
|
result = query_doc_with_hybrid_search(
|
|
collection_name=collection_name,
|
|
query=query,
|
|
embedding_function=embedding_function,
|
|
k=k,
|
|
reranking_function=reranking_function,
|
|
r=r,
|
|
)
|
|
results.append(result)
|
|
except Exception as e:
|
|
log.exception(
|
|
"Error when querying the collection with " f"hybrid_search: {e}"
|
|
)
|
|
error = True
|
|
|
|
if error:
|
|
raise Exception(
|
|
"Hybrid search failed for all collections. Using Non hybrid search as fallback."
|
|
)
|
|
|
|
return merge_and_sort_query_results(results, k=k, reverse=True)
|
|
|
|
|
|
def get_embedding_function(
|
|
embedding_engine,
|
|
embedding_model,
|
|
embedding_function,
|
|
url,
|
|
key,
|
|
embedding_batch_size,
|
|
):
|
|
if embedding_engine == "":
|
|
return lambda query: embedding_function.encode(query).tolist()
|
|
elif embedding_engine in ["ollama", "openai"]:
|
|
func = lambda query: generate_embeddings(
|
|
engine=embedding_engine,
|
|
model=embedding_model,
|
|
text=query,
|
|
url=url,
|
|
key=key,
|
|
)
|
|
|
|
def generate_multiple(query, func):
|
|
if isinstance(query, list):
|
|
embeddings = []
|
|
for i in range(0, len(query), embedding_batch_size):
|
|
embeddings.extend(func(query[i : i + embedding_batch_size]))
|
|
return embeddings
|
|
else:
|
|
return func(query)
|
|
|
|
return lambda query: generate_multiple(query, func)
|
|
|
|
|
|
def get_sources_from_files(
|
|
files,
|
|
queries,
|
|
embedding_function,
|
|
k,
|
|
reranking_function,
|
|
r,
|
|
hybrid_search,
|
|
):
|
|
log.debug(f"files: {files} {queries} {embedding_function} {reranking_function}")
|
|
|
|
extracted_collections = []
|
|
relevant_contexts = []
|
|
|
|
for file in files:
|
|
if file.get("context") == "full":
|
|
context = {
|
|
"documents": [[file.get("file").get("data", {}).get("content")]],
|
|
"metadatas": [[{"file_id": file.get("id"), "name": file.get("name")}]],
|
|
}
|
|
else:
|
|
context = None
|
|
|
|
collection_names = []
|
|
if file.get("type") == "collection":
|
|
if file.get("legacy"):
|
|
collection_names = file.get("collection_names", [])
|
|
else:
|
|
collection_names.append(file["id"])
|
|
elif file.get("collection_name"):
|
|
collection_names.append(file["collection_name"])
|
|
elif file.get("id"):
|
|
if file.get("legacy"):
|
|
collection_names.append(f"{file['id']}")
|
|
else:
|
|
collection_names.append(f"file-{file['id']}")
|
|
|
|
collection_names = set(collection_names).difference(extracted_collections)
|
|
if not collection_names:
|
|
log.debug(f"skipping {file} as it has already been extracted")
|
|
continue
|
|
|
|
try:
|
|
context = None
|
|
if file.get("type") == "text":
|
|
context = file["content"]
|
|
else:
|
|
if hybrid_search:
|
|
try:
|
|
context = query_collection_with_hybrid_search(
|
|
collection_names=collection_names,
|
|
queries=queries,
|
|
embedding_function=embedding_function,
|
|
k=k,
|
|
reranking_function=reranking_function,
|
|
r=r,
|
|
)
|
|
except Exception as e:
|
|
log.debug(
|
|
"Error when using hybrid search, using"
|
|
" non hybrid search as fallback."
|
|
)
|
|
|
|
if (not hybrid_search) or (context is None):
|
|
context = query_collection(
|
|
collection_names=collection_names,
|
|
queries=queries,
|
|
embedding_function=embedding_function,
|
|
k=k,
|
|
)
|
|
except Exception as e:
|
|
log.exception(e)
|
|
|
|
extracted_collections.extend(collection_names)
|
|
|
|
if context:
|
|
if "data" in file:
|
|
del file["data"]
|
|
relevant_contexts.append({**context, "file": file})
|
|
|
|
sources = []
|
|
for context in relevant_contexts:
|
|
try:
|
|
if "documents" in context:
|
|
if "metadatas" in context:
|
|
source = {
|
|
"source": context["file"],
|
|
"document": context["documents"][0],
|
|
"metadata": context["metadatas"][0],
|
|
}
|
|
if "distances" in context and context["distances"]:
|
|
source["distances"] = context["distances"][0]
|
|
|
|
sources.append(source)
|
|
except Exception as e:
|
|
log.exception(e)
|
|
|
|
return sources
|
|
|
|
|
|
def get_model_path(model: str, update_model: bool = False):
|
|
# Construct huggingface_hub kwargs with local_files_only to return the snapshot path
|
|
cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
|
|
|
|
local_files_only = not update_model
|
|
|
|
snapshot_kwargs = {
|
|
"cache_dir": cache_dir,
|
|
"local_files_only": local_files_only,
|
|
}
|
|
|
|
log.debug(f"model: {model}")
|
|
log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
|
|
|
|
# Inspiration from upstream sentence_transformers
|
|
if (
|
|
os.path.exists(model)
|
|
or ("\\" in model or model.count("/") > 1)
|
|
and local_files_only
|
|
):
|
|
# If fully qualified path exists, return input, else set repo_id
|
|
return model
|
|
elif "/" not in model:
|
|
# Set valid repo_id for model short-name
|
|
model = "sentence-transformers" + "/" + model
|
|
|
|
snapshot_kwargs["repo_id"] = model
|
|
|
|
# Attempt to query the huggingface_hub library to determine the local path and/or to update
|
|
try:
|
|
model_repo_path = snapshot_download(**snapshot_kwargs)
|
|
log.debug(f"model_repo_path: {model_repo_path}")
|
|
return model_repo_path
|
|
except Exception as e:
|
|
log.exception(f"Cannot determine model snapshot path: {e}")
|
|
return model
|
|
|
|
|
|
def generate_openai_batch_embeddings(
|
|
model: str, texts: list[str], url: str = "https://api.openai.com/v1", key: str = ""
|
|
) -> Optional[list[list[float]]]:
|
|
try:
|
|
r = requests.post(
|
|
f"{url}/embeddings",
|
|
headers={
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {key}",
|
|
},
|
|
json={"input": texts, "model": model},
|
|
)
|
|
r.raise_for_status()
|
|
data = r.json()
|
|
if "data" in data:
|
|
return [elem["embedding"] for elem in data["data"]]
|
|
else:
|
|
raise "Something went wrong :/"
|
|
except Exception as e:
|
|
print(e)
|
|
return None
|
|
|
|
|
|
def generate_ollama_batch_embeddings(
|
|
model: str, texts: list[str], url: str, key: str = ""
|
|
) -> Optional[list[list[float]]]:
|
|
try:
|
|
r = requests.post(
|
|
f"{url}/api/embed",
|
|
headers={
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {key}",
|
|
},
|
|
json={"input": texts, "model": model},
|
|
)
|
|
r.raise_for_status()
|
|
data = r.json()
|
|
|
|
if "embeddings" in data:
|
|
return data["embeddings"]
|
|
else:
|
|
raise "Something went wrong :/"
|
|
except Exception as e:
|
|
print(e)
|
|
return None
|
|
|
|
|
|
def generate_embeddings(engine: str, model: str, text: Union[str, list[str]], **kwargs):
|
|
url = kwargs.get("url", "")
|
|
key = kwargs.get("key", "")
|
|
|
|
if engine == "ollama":
|
|
if isinstance(text, list):
|
|
embeddings = generate_ollama_batch_embeddings(
|
|
**{"model": model, "texts": text, "url": url, "key": key}
|
|
)
|
|
else:
|
|
embeddings = generate_ollama_batch_embeddings(
|
|
**{"model": model, "texts": [text], "url": url, "key": key}
|
|
)
|
|
return embeddings[0] if isinstance(text, str) else embeddings
|
|
elif engine == "openai":
|
|
if isinstance(text, list):
|
|
embeddings = generate_openai_batch_embeddings(model, text, url, key)
|
|
else:
|
|
embeddings = generate_openai_batch_embeddings(model, [text], url, key)
|
|
|
|
return embeddings[0] if isinstance(text, str) else embeddings
|
|
|
|
|
|
import operator
|
|
from typing import Optional, Sequence
|
|
|
|
from langchain_core.callbacks import Callbacks
|
|
from langchain_core.documents import BaseDocumentCompressor, Document
|
|
|
|
|
|
class RerankCompressor(BaseDocumentCompressor):
|
|
embedding_function: Any
|
|
top_n: int
|
|
reranking_function: Any
|
|
r_score: float
|
|
|
|
class Config:
|
|
extra = "forbid"
|
|
arbitrary_types_allowed = True
|
|
|
|
def compress_documents(
|
|
self,
|
|
documents: Sequence[Document],
|
|
query: str,
|
|
callbacks: Optional[Callbacks] = None,
|
|
) -> Sequence[Document]:
|
|
reranking = self.reranking_function is not None
|
|
|
|
if reranking:
|
|
scores = self.reranking_function.predict(
|
|
[(query, doc.page_content) for doc in documents]
|
|
)
|
|
else:
|
|
from sentence_transformers import util
|
|
|
|
query_embedding = self.embedding_function(query)
|
|
document_embedding = self.embedding_function(
|
|
[doc.page_content for doc in documents]
|
|
)
|
|
scores = util.cos_sim(query_embedding, document_embedding)[0]
|
|
|
|
docs_with_scores = list(zip(documents, scores.tolist()))
|
|
if self.r_score:
|
|
docs_with_scores = [
|
|
(d, s) for d, s in docs_with_scores if s >= self.r_score
|
|
]
|
|
|
|
result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
|
|
final_results = []
|
|
for doc, doc_score in result[: self.top_n]:
|
|
metadata = doc.metadata
|
|
metadata["score"] = doc_score
|
|
doc = Document(
|
|
page_content=doc.page_content,
|
|
metadata=metadata,
|
|
)
|
|
final_results.append(doc)
|
|
return final_results
|