mirror of
https://github.com/open-webui/open-webui
synced 2024-11-16 13:40:55 +00:00
2145 lines
66 KiB
Python
2145 lines
66 KiB
Python
import base64
|
|
import uuid
|
|
from contextlib import asynccontextmanager
|
|
|
|
from authlib.integrations.starlette_client import OAuth
|
|
from authlib.oidc.core import UserInfo
|
|
import json
|
|
import time
|
|
import os
|
|
import sys
|
|
import logging
|
|
import aiohttp
|
|
import requests
|
|
import mimetypes
|
|
import shutil
|
|
import os
|
|
import uuid
|
|
import inspect
|
|
|
|
from fastapi import FastAPI, Request, Depends, status, UploadFile, File, Form
|
|
from fastapi.staticfiles import StaticFiles
|
|
from fastapi.responses import JSONResponse
|
|
from fastapi import HTTPException
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
from sqlalchemy import text
|
|
from starlette.exceptions import HTTPException as StarletteHTTPException
|
|
from starlette.middleware.base import BaseHTTPMiddleware
|
|
from starlette.middleware.sessions import SessionMiddleware
|
|
from starlette.responses import StreamingResponse, Response, RedirectResponse
|
|
|
|
|
|
from apps.socket.main import sio, app as socket_app
|
|
from apps.ollama.main import (
|
|
app as ollama_app,
|
|
get_all_models as get_ollama_models,
|
|
generate_openai_chat_completion as generate_ollama_chat_completion,
|
|
)
|
|
from apps.openai.main import (
|
|
app as openai_app,
|
|
get_all_models as get_openai_models,
|
|
generate_chat_completion as generate_openai_chat_completion,
|
|
)
|
|
|
|
from apps.audio.main import app as audio_app
|
|
from apps.images.main import app as images_app
|
|
from apps.rag.main import app as rag_app
|
|
from apps.webui.main import (
|
|
app as webui_app,
|
|
get_pipe_models,
|
|
generate_function_chat_completion,
|
|
)
|
|
from apps.webui.internal.db import Session
|
|
|
|
|
|
from pydantic import BaseModel
|
|
from typing import List, Optional
|
|
|
|
from apps.webui.models.auths import Auths
|
|
from apps.webui.models.models import Models
|
|
from apps.webui.models.tools import Tools
|
|
from apps.webui.models.functions import Functions
|
|
from apps.webui.models.users import Users
|
|
|
|
from apps.webui.utils import load_toolkit_module_by_id, load_function_module_by_id
|
|
|
|
from utils.utils import (
|
|
get_admin_user,
|
|
get_verified_user,
|
|
get_current_user,
|
|
get_http_authorization_cred,
|
|
get_password_hash,
|
|
create_token,
|
|
)
|
|
from utils.task import (
|
|
title_generation_template,
|
|
search_query_generation_template,
|
|
tools_function_calling_generation_template,
|
|
)
|
|
from utils.misc import (
|
|
get_last_user_message,
|
|
add_or_update_system_message,
|
|
parse_duration,
|
|
)
|
|
|
|
from apps.rag.utils import get_rag_context, rag_template
|
|
|
|
from config import (
|
|
WEBUI_NAME,
|
|
WEBUI_URL,
|
|
WEBUI_AUTH,
|
|
ENV,
|
|
VERSION,
|
|
CHANGELOG,
|
|
FRONTEND_BUILD_DIR,
|
|
CACHE_DIR,
|
|
STATIC_DIR,
|
|
DEFAULT_LOCALE,
|
|
ENABLE_OPENAI_API,
|
|
ENABLE_OLLAMA_API,
|
|
ENABLE_MODEL_FILTER,
|
|
MODEL_FILTER_LIST,
|
|
GLOBAL_LOG_LEVEL,
|
|
SRC_LOG_LEVELS,
|
|
WEBHOOK_URL,
|
|
ENABLE_ADMIN_EXPORT,
|
|
WEBUI_BUILD_HASH,
|
|
TASK_MODEL,
|
|
TASK_MODEL_EXTERNAL,
|
|
TITLE_GENERATION_PROMPT_TEMPLATE,
|
|
SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE,
|
|
SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD,
|
|
TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE,
|
|
SAFE_MODE,
|
|
OAUTH_PROVIDERS,
|
|
ENABLE_OAUTH_SIGNUP,
|
|
OAUTH_MERGE_ACCOUNTS_BY_EMAIL,
|
|
WEBUI_SECRET_KEY,
|
|
WEBUI_SESSION_COOKIE_SAME_SITE,
|
|
WEBUI_SESSION_COOKIE_SECURE,
|
|
AppConfig,
|
|
)
|
|
|
|
from constants import ERROR_MESSAGES, WEBHOOK_MESSAGES, TASKS
|
|
from utils.webhook import post_webhook
|
|
|
|
if SAFE_MODE:
|
|
print("SAFE MODE ENABLED")
|
|
Functions.deactivate_all_functions()
|
|
|
|
|
|
logging.basicConfig(stream=sys.stdout, level=GLOBAL_LOG_LEVEL)
|
|
log = logging.getLogger(__name__)
|
|
log.setLevel(SRC_LOG_LEVELS["MAIN"])
|
|
|
|
|
|
class SPAStaticFiles(StaticFiles):
|
|
async def get_response(self, path: str, scope):
|
|
try:
|
|
return await super().get_response(path, scope)
|
|
except (HTTPException, StarletteHTTPException) as ex:
|
|
if ex.status_code == 404:
|
|
return await super().get_response("index.html", scope)
|
|
else:
|
|
raise ex
|
|
|
|
|
|
print(
|
|
rf"""
|
|
___ __ __ _ _ _ ___
|
|
/ _ \ _ __ ___ _ __ \ \ / /__| |__ | | | |_ _|
|
|
| | | | '_ \ / _ \ '_ \ \ \ /\ / / _ \ '_ \| | | || |
|
|
| |_| | |_) | __/ | | | \ V V / __/ |_) | |_| || |
|
|
\___/| .__/ \___|_| |_| \_/\_/ \___|_.__/ \___/|___|
|
|
|_|
|
|
|
|
|
|
v{VERSION} - building the best open-source AI user interface.
|
|
{f"Commit: {WEBUI_BUILD_HASH}" if WEBUI_BUILD_HASH != "dev-build" else ""}
|
|
https://github.com/open-webui/open-webui
|
|
"""
|
|
)
|
|
|
|
|
|
def run_migrations():
|
|
try:
|
|
from alembic.config import Config
|
|
from alembic import command
|
|
|
|
alembic_cfg = Config("alembic.ini")
|
|
command.upgrade(alembic_cfg, "head")
|
|
except Exception as e:
|
|
print(f"Error: {e}")
|
|
|
|
|
|
@asynccontextmanager
|
|
async def lifespan(app: FastAPI):
|
|
run_migrations()
|
|
yield
|
|
|
|
|
|
app = FastAPI(
|
|
docs_url="/docs" if ENV == "dev" else None, redoc_url=None, lifespan=lifespan
|
|
)
|
|
|
|
app.state.config = AppConfig()
|
|
|
|
app.state.config.ENABLE_OPENAI_API = ENABLE_OPENAI_API
|
|
app.state.config.ENABLE_OLLAMA_API = ENABLE_OLLAMA_API
|
|
|
|
app.state.config.ENABLE_MODEL_FILTER = ENABLE_MODEL_FILTER
|
|
app.state.config.MODEL_FILTER_LIST = MODEL_FILTER_LIST
|
|
|
|
app.state.config.WEBHOOK_URL = WEBHOOK_URL
|
|
|
|
|
|
app.state.config.TASK_MODEL = TASK_MODEL
|
|
app.state.config.TASK_MODEL_EXTERNAL = TASK_MODEL_EXTERNAL
|
|
app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE = TITLE_GENERATION_PROMPT_TEMPLATE
|
|
app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE = (
|
|
SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE
|
|
)
|
|
app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD = (
|
|
SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD
|
|
)
|
|
app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE = (
|
|
TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE
|
|
)
|
|
|
|
app.state.MODELS = {}
|
|
|
|
origins = ["*"]
|
|
|
|
|
|
##################################
|
|
#
|
|
# ChatCompletion Middleware
|
|
#
|
|
##################################
|
|
|
|
|
|
async def get_body_and_model_and_user(request):
|
|
# Read the original request body
|
|
body = await request.body()
|
|
body_str = body.decode("utf-8")
|
|
body = json.loads(body_str) if body_str else {}
|
|
|
|
model_id = body["model"]
|
|
if model_id not in app.state.MODELS:
|
|
raise Exception("Model not found")
|
|
model = app.state.MODELS[model_id]
|
|
|
|
user = get_current_user(
|
|
request,
|
|
get_http_authorization_cred(request.headers.get("Authorization")),
|
|
)
|
|
|
|
return body, model, user
|
|
|
|
|
|
def get_task_model_id(default_model_id):
|
|
# Set the task model
|
|
task_model_id = default_model_id
|
|
# Check if the user has a custom task model and use that model
|
|
if app.state.MODELS[task_model_id]["owned_by"] == "ollama":
|
|
if (
|
|
app.state.config.TASK_MODEL
|
|
and app.state.config.TASK_MODEL in app.state.MODELS
|
|
):
|
|
task_model_id = app.state.config.TASK_MODEL
|
|
else:
|
|
if (
|
|
app.state.config.TASK_MODEL_EXTERNAL
|
|
and app.state.config.TASK_MODEL_EXTERNAL in app.state.MODELS
|
|
):
|
|
task_model_id = app.state.config.TASK_MODEL_EXTERNAL
|
|
|
|
return task_model_id
|
|
|
|
|
|
def get_filter_function_ids(model):
|
|
def get_priority(function_id):
|
|
function = Functions.get_function_by_id(function_id)
|
|
if function is not None and hasattr(function, "valves"):
|
|
return (function.valves if function.valves else {}).get("priority", 0)
|
|
return 0
|
|
|
|
filter_ids = [function.id for function in Functions.get_global_filter_functions()]
|
|
if "info" in model and "meta" in model["info"]:
|
|
filter_ids.extend(model["info"]["meta"].get("filterIds", []))
|
|
filter_ids = list(set(filter_ids))
|
|
|
|
enabled_filter_ids = [
|
|
function.id
|
|
for function in Functions.get_functions_by_type("filter", active_only=True)
|
|
]
|
|
|
|
filter_ids = [
|
|
filter_id for filter_id in filter_ids if filter_id in enabled_filter_ids
|
|
]
|
|
|
|
filter_ids.sort(key=get_priority)
|
|
return filter_ids
|
|
|
|
|
|
async def get_function_call_response(
|
|
messages,
|
|
files,
|
|
tool_id,
|
|
template,
|
|
task_model_id,
|
|
user,
|
|
__event_emitter__=None,
|
|
__event_call__=None,
|
|
):
|
|
tool = Tools.get_tool_by_id(tool_id)
|
|
tools_specs = json.dumps(tool.specs, indent=2)
|
|
content = tools_function_calling_generation_template(template, tools_specs)
|
|
|
|
user_message = get_last_user_message(messages)
|
|
prompt = (
|
|
"History:\n"
|
|
+ "\n".join(
|
|
[
|
|
f"{message['role'].upper()}: \"\"\"{message['content']}\"\"\""
|
|
for message in messages[::-1][:4]
|
|
]
|
|
)
|
|
+ f"\nQuery: {user_message}"
|
|
)
|
|
|
|
print(prompt)
|
|
|
|
payload = {
|
|
"model": task_model_id,
|
|
"messages": [
|
|
{"role": "system", "content": content},
|
|
{"role": "user", "content": f"Query: {prompt}"},
|
|
],
|
|
"stream": False,
|
|
"task": TASKS.FUNCTION_CALLING,
|
|
}
|
|
|
|
try:
|
|
payload = filter_pipeline(payload, user)
|
|
except Exception as e:
|
|
raise e
|
|
|
|
model = app.state.MODELS[task_model_id]
|
|
|
|
response = None
|
|
try:
|
|
response = await generate_chat_completions(form_data=payload, user=user)
|
|
content = None
|
|
|
|
if hasattr(response, "body_iterator"):
|
|
async for chunk in response.body_iterator:
|
|
data = json.loads(chunk.decode("utf-8"))
|
|
content = data["choices"][0]["message"]["content"]
|
|
|
|
# Cleanup any remaining background tasks if necessary
|
|
if response.background is not None:
|
|
await response.background()
|
|
else:
|
|
content = response["choices"][0]["message"]["content"]
|
|
|
|
if content is None:
|
|
return None, None, False
|
|
|
|
# Parse the function response
|
|
print(f"content: {content}")
|
|
result = json.loads(content)
|
|
print(result)
|
|
|
|
citation = None
|
|
|
|
if "name" not in result:
|
|
return None, None, False
|
|
|
|
# Call the function
|
|
if tool_id in webui_app.state.TOOLS:
|
|
toolkit_module = webui_app.state.TOOLS[tool_id]
|
|
else:
|
|
toolkit_module, _ = load_toolkit_module_by_id(tool_id)
|
|
webui_app.state.TOOLS[tool_id] = toolkit_module
|
|
|
|
file_handler = False
|
|
# check if toolkit_module has file_handler self variable
|
|
if hasattr(toolkit_module, "file_handler"):
|
|
file_handler = True
|
|
print("file_handler: ", file_handler)
|
|
|
|
if hasattr(toolkit_module, "valves") and hasattr(toolkit_module, "Valves"):
|
|
valves = Tools.get_tool_valves_by_id(tool_id)
|
|
toolkit_module.valves = toolkit_module.Valves(**(valves if valves else {}))
|
|
|
|
function = getattr(toolkit_module, result["name"])
|
|
function_result = None
|
|
try:
|
|
# Get the signature of the function
|
|
sig = inspect.signature(function)
|
|
params = result["parameters"]
|
|
|
|
# Extra parameters to be passed to the function
|
|
extra_params = {
|
|
"__model__": model,
|
|
"__id__": tool_id,
|
|
"__messages__": messages,
|
|
"__files__": files,
|
|
"__event_emitter__": __event_emitter__,
|
|
"__event_call__": __event_call__,
|
|
}
|
|
|
|
# Add extra params in contained in function signature
|
|
for key, value in extra_params.items():
|
|
if key in sig.parameters:
|
|
params[key] = value
|
|
|
|
if "__user__" in sig.parameters:
|
|
# Call the function with the '__user__' parameter included
|
|
__user__ = {
|
|
"id": user.id,
|
|
"email": user.email,
|
|
"name": user.name,
|
|
"role": user.role,
|
|
}
|
|
|
|
try:
|
|
if hasattr(toolkit_module, "UserValves"):
|
|
__user__["valves"] = toolkit_module.UserValves(
|
|
**Tools.get_user_valves_by_id_and_user_id(tool_id, user.id)
|
|
)
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
params = {**params, "__user__": __user__}
|
|
|
|
if inspect.iscoroutinefunction(function):
|
|
function_result = await function(**params)
|
|
else:
|
|
function_result = function(**params)
|
|
|
|
if hasattr(toolkit_module, "citation") and toolkit_module.citation:
|
|
citation = {
|
|
"source": {"name": f"TOOL:{tool.name}/{result['name']}"},
|
|
"document": [function_result],
|
|
"metadata": [{"source": result["name"]}],
|
|
}
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
# Add the function result to the system prompt
|
|
if function_result is not None:
|
|
return function_result, citation, file_handler
|
|
except Exception as e:
|
|
print(f"Error: {e}")
|
|
|
|
return None, None, False
|
|
|
|
|
|
async def chat_completion_functions_handler(
|
|
body, model, user, __event_emitter__, __event_call__
|
|
):
|
|
skip_files = None
|
|
|
|
filter_ids = get_filter_function_ids(model)
|
|
for filter_id in filter_ids:
|
|
filter = Functions.get_function_by_id(filter_id)
|
|
if not filter:
|
|
continue
|
|
|
|
if filter_id in webui_app.state.FUNCTIONS:
|
|
function_module = webui_app.state.FUNCTIONS[filter_id]
|
|
else:
|
|
function_module, _, _ = load_function_module_by_id(filter_id)
|
|
webui_app.state.FUNCTIONS[filter_id] = function_module
|
|
|
|
# Check if the function has a file_handler variable
|
|
if hasattr(function_module, "file_handler"):
|
|
skip_files = function_module.file_handler
|
|
|
|
if hasattr(function_module, "valves") and hasattr(function_module, "Valves"):
|
|
valves = Functions.get_function_valves_by_id(filter_id)
|
|
function_module.valves = function_module.Valves(
|
|
**(valves if valves else {})
|
|
)
|
|
|
|
if not hasattr(function_module, "inlet"):
|
|
continue
|
|
|
|
try:
|
|
inlet = function_module.inlet
|
|
|
|
# Get the signature of the function
|
|
sig = inspect.signature(inlet)
|
|
params = {"body": body}
|
|
|
|
# Extra parameters to be passed to the function
|
|
extra_params = {
|
|
"__model__": model,
|
|
"__id__": filter_id,
|
|
"__event_emitter__": __event_emitter__,
|
|
"__event_call__": __event_call__,
|
|
}
|
|
|
|
# Add extra params in contained in function signature
|
|
for key, value in extra_params.items():
|
|
if key in sig.parameters:
|
|
params[key] = value
|
|
|
|
if "__user__" in sig.parameters:
|
|
__user__ = {
|
|
"id": user.id,
|
|
"email": user.email,
|
|
"name": user.name,
|
|
"role": user.role,
|
|
}
|
|
|
|
try:
|
|
if hasattr(function_module, "UserValves"):
|
|
__user__["valves"] = function_module.UserValves(
|
|
**Functions.get_user_valves_by_id_and_user_id(
|
|
filter_id, user.id
|
|
)
|
|
)
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
params = {**params, "__user__": __user__}
|
|
|
|
if inspect.iscoroutinefunction(inlet):
|
|
body = await inlet(**params)
|
|
else:
|
|
body = inlet(**params)
|
|
|
|
except Exception as e:
|
|
print(f"Error: {e}")
|
|
raise e
|
|
|
|
if skip_files:
|
|
if "files" in body:
|
|
del body["files"]
|
|
|
|
return body, {}
|
|
|
|
|
|
async def chat_completion_tools_handler(body, user, __event_emitter__, __event_call__):
|
|
skip_files = None
|
|
|
|
contexts = []
|
|
citations = None
|
|
|
|
task_model_id = get_task_model_id(body["model"])
|
|
|
|
# If tool_ids field is present, call the functions
|
|
if "tool_ids" in body:
|
|
print(body["tool_ids"])
|
|
for tool_id in body["tool_ids"]:
|
|
print(tool_id)
|
|
try:
|
|
response, citation, file_handler = await get_function_call_response(
|
|
messages=body["messages"],
|
|
files=body.get("files", []),
|
|
tool_id=tool_id,
|
|
template=app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE,
|
|
task_model_id=task_model_id,
|
|
user=user,
|
|
__event_emitter__=__event_emitter__,
|
|
__event_call__=__event_call__,
|
|
)
|
|
|
|
print(file_handler)
|
|
if isinstance(response, str):
|
|
contexts.append(response)
|
|
|
|
if citation:
|
|
if citations is None:
|
|
citations = [citation]
|
|
else:
|
|
citations.append(citation)
|
|
|
|
if file_handler:
|
|
skip_files = True
|
|
|
|
except Exception as e:
|
|
print(f"Error: {e}")
|
|
del body["tool_ids"]
|
|
print(f"tool_contexts: {contexts}")
|
|
|
|
if skip_files:
|
|
if "files" in body:
|
|
del body["files"]
|
|
|
|
return body, {
|
|
**({"contexts": contexts} if contexts is not None else {}),
|
|
**({"citations": citations} if citations is not None else {}),
|
|
}
|
|
|
|
|
|
async def chat_completion_files_handler(body):
|
|
contexts = []
|
|
citations = None
|
|
|
|
if "files" in body:
|
|
files = body["files"]
|
|
del body["files"]
|
|
|
|
contexts, citations = get_rag_context(
|
|
files=files,
|
|
messages=body["messages"],
|
|
embedding_function=rag_app.state.EMBEDDING_FUNCTION,
|
|
k=rag_app.state.config.TOP_K,
|
|
reranking_function=rag_app.state.sentence_transformer_rf,
|
|
r=rag_app.state.config.RELEVANCE_THRESHOLD,
|
|
hybrid_search=rag_app.state.config.ENABLE_RAG_HYBRID_SEARCH,
|
|
)
|
|
|
|
log.debug(f"rag_contexts: {contexts}, citations: {citations}")
|
|
|
|
return body, {
|
|
**({"contexts": contexts} if contexts is not None else {}),
|
|
**({"citations": citations} if citations is not None else {}),
|
|
}
|
|
|
|
|
|
class ChatCompletionMiddleware(BaseHTTPMiddleware):
|
|
async def dispatch(self, request: Request, call_next):
|
|
if request.method == "POST" and any(
|
|
endpoint in request.url.path
|
|
for endpoint in ["/ollama/api/chat", "/chat/completions"]
|
|
):
|
|
log.debug(f"request.url.path: {request.url.path}")
|
|
|
|
try:
|
|
body, model, user = await get_body_and_model_and_user(request)
|
|
except Exception as e:
|
|
return JSONResponse(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
content={"detail": str(e)},
|
|
)
|
|
|
|
# Extract session_id, chat_id and message_id from the request body
|
|
session_id = None
|
|
if "session_id" in body:
|
|
session_id = body["session_id"]
|
|
del body["session_id"]
|
|
chat_id = None
|
|
if "chat_id" in body:
|
|
chat_id = body["chat_id"]
|
|
del body["chat_id"]
|
|
message_id = None
|
|
if "id" in body:
|
|
message_id = body["id"]
|
|
del body["id"]
|
|
|
|
async def __event_emitter__(data):
|
|
await sio.emit(
|
|
"chat-events",
|
|
{
|
|
"chat_id": chat_id,
|
|
"message_id": message_id,
|
|
"data": data,
|
|
},
|
|
to=session_id,
|
|
)
|
|
|
|
async def __event_call__(data):
|
|
response = await sio.call(
|
|
"chat-events",
|
|
{"chat_id": chat_id, "message_id": message_id, "data": data},
|
|
to=session_id,
|
|
)
|
|
return response
|
|
|
|
# Initialize data_items to store additional data to be sent to the client
|
|
data_items = []
|
|
|
|
# Initialize context, and citations
|
|
contexts = []
|
|
citations = []
|
|
|
|
try:
|
|
body, flags = await chat_completion_functions_handler(
|
|
body, model, user, __event_emitter__, __event_call__
|
|
)
|
|
except Exception as e:
|
|
return JSONResponse(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
content={"detail": str(e)},
|
|
)
|
|
|
|
try:
|
|
body, flags = await chat_completion_tools_handler(
|
|
body, user, __event_emitter__, __event_call__
|
|
)
|
|
|
|
contexts.extend(flags.get("contexts", []))
|
|
citations.extend(flags.get("citations", []))
|
|
except Exception as e:
|
|
print(e)
|
|
pass
|
|
|
|
try:
|
|
body, flags = await chat_completion_files_handler(body)
|
|
|
|
contexts.extend(flags.get("contexts", []))
|
|
citations.extend(flags.get("citations", []))
|
|
except Exception as e:
|
|
print(e)
|
|
pass
|
|
|
|
# If context is not empty, insert it into the messages
|
|
if len(contexts) > 0:
|
|
context_string = "/n".join(contexts).strip()
|
|
prompt = get_last_user_message(body["messages"])
|
|
body["messages"] = add_or_update_system_message(
|
|
rag_template(
|
|
rag_app.state.config.RAG_TEMPLATE, context_string, prompt
|
|
),
|
|
body["messages"],
|
|
)
|
|
|
|
# If there are citations, add them to the data_items
|
|
if len(citations) > 0:
|
|
data_items.append({"citations": citations})
|
|
|
|
modified_body_bytes = json.dumps(body).encode("utf-8")
|
|
# Replace the request body with the modified one
|
|
request._body = modified_body_bytes
|
|
# Set custom header to ensure content-length matches new body length
|
|
request.headers.__dict__["_list"] = [
|
|
(b"content-length", str(len(modified_body_bytes)).encode("utf-8")),
|
|
*[
|
|
(k, v)
|
|
for k, v in request.headers.raw
|
|
if k.lower() != b"content-length"
|
|
],
|
|
]
|
|
|
|
response = await call_next(request)
|
|
if isinstance(response, StreamingResponse):
|
|
# If it's a streaming response, inject it as SSE event or NDJSON line
|
|
content_type = response.headers.get("Content-Type")
|
|
if "text/event-stream" in content_type:
|
|
return StreamingResponse(
|
|
self.openai_stream_wrapper(response.body_iterator, data_items),
|
|
)
|
|
if "application/x-ndjson" in content_type:
|
|
return StreamingResponse(
|
|
self.ollama_stream_wrapper(response.body_iterator, data_items),
|
|
)
|
|
|
|
return response
|
|
else:
|
|
return response
|
|
|
|
# If it's not a chat completion request, just pass it through
|
|
response = await call_next(request)
|
|
return response
|
|
|
|
async def _receive(self, body: bytes):
|
|
return {"type": "http.request", "body": body, "more_body": False}
|
|
|
|
async def openai_stream_wrapper(self, original_generator, data_items):
|
|
for item in data_items:
|
|
yield f"data: {json.dumps(item)}\n\n"
|
|
|
|
async for data in original_generator:
|
|
yield data
|
|
|
|
async def ollama_stream_wrapper(self, original_generator, data_items):
|
|
for item in data_items:
|
|
yield f"{json.dumps(item)}\n"
|
|
|
|
async for data in original_generator:
|
|
yield data
|
|
|
|
|
|
app.add_middleware(ChatCompletionMiddleware)
|
|
|
|
##################################
|
|
#
|
|
# Pipeline Middleware
|
|
#
|
|
##################################
|
|
|
|
|
|
def get_sorted_filters(model_id):
|
|
filters = [
|
|
model
|
|
for model in app.state.MODELS.values()
|
|
if "pipeline" in model
|
|
and "type" in model["pipeline"]
|
|
and model["pipeline"]["type"] == "filter"
|
|
and (
|
|
model["pipeline"]["pipelines"] == ["*"]
|
|
or any(
|
|
model_id == target_model_id
|
|
for target_model_id in model["pipeline"]["pipelines"]
|
|
)
|
|
)
|
|
]
|
|
sorted_filters = sorted(filters, key=lambda x: x["pipeline"]["priority"])
|
|
return sorted_filters
|
|
|
|
|
|
def filter_pipeline(payload, user):
|
|
user = {"id": user.id, "email": user.email, "name": user.name, "role": user.role}
|
|
model_id = payload["model"]
|
|
sorted_filters = get_sorted_filters(model_id)
|
|
|
|
model = app.state.MODELS[model_id]
|
|
|
|
if "pipeline" in model:
|
|
sorted_filters.append(model)
|
|
|
|
for filter in sorted_filters:
|
|
r = None
|
|
try:
|
|
urlIdx = filter["urlIdx"]
|
|
|
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
|
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
|
|
|
|
if key != "":
|
|
headers = {"Authorization": f"Bearer {key}"}
|
|
r = requests.post(
|
|
f"{url}/{filter['id']}/filter/inlet",
|
|
headers=headers,
|
|
json={
|
|
"user": user,
|
|
"body": payload,
|
|
},
|
|
)
|
|
|
|
r.raise_for_status()
|
|
payload = r.json()
|
|
except Exception as e:
|
|
# Handle connection error here
|
|
print(f"Connection error: {e}")
|
|
|
|
if r is not None:
|
|
res = r.json()
|
|
if "detail" in res:
|
|
raise Exception(r.status_code, res["detail"])
|
|
|
|
if "pipeline" not in app.state.MODELS[model_id] and "task" in payload:
|
|
del payload["task"]
|
|
|
|
return payload
|
|
|
|
|
|
class PipelineMiddleware(BaseHTTPMiddleware):
|
|
async def dispatch(self, request: Request, call_next):
|
|
if request.method == "POST" and (
|
|
"/ollama/api/chat" in request.url.path
|
|
or "/chat/completions" in request.url.path
|
|
):
|
|
log.debug(f"request.url.path: {request.url.path}")
|
|
|
|
# Read the original request body
|
|
body = await request.body()
|
|
# Decode body to string
|
|
body_str = body.decode("utf-8")
|
|
# Parse string to JSON
|
|
data = json.loads(body_str) if body_str else {}
|
|
|
|
user = get_current_user(
|
|
request,
|
|
get_http_authorization_cred(request.headers.get("Authorization")),
|
|
)
|
|
|
|
try:
|
|
data = filter_pipeline(data, user)
|
|
except Exception as e:
|
|
return JSONResponse(
|
|
status_code=e.args[0],
|
|
content={"detail": e.args[1]},
|
|
)
|
|
|
|
modified_body_bytes = json.dumps(data).encode("utf-8")
|
|
# Replace the request body with the modified one
|
|
request._body = modified_body_bytes
|
|
# Set custom header to ensure content-length matches new body length
|
|
request.headers.__dict__["_list"] = [
|
|
(b"content-length", str(len(modified_body_bytes)).encode("utf-8")),
|
|
*[
|
|
(k, v)
|
|
for k, v in request.headers.raw
|
|
if k.lower() != b"content-length"
|
|
],
|
|
]
|
|
|
|
response = await call_next(request)
|
|
return response
|
|
|
|
async def _receive(self, body: bytes):
|
|
return {"type": "http.request", "body": body, "more_body": False}
|
|
|
|
|
|
app.add_middleware(PipelineMiddleware)
|
|
|
|
|
|
app.add_middleware(
|
|
CORSMiddleware,
|
|
allow_origins=origins,
|
|
allow_credentials=True,
|
|
allow_methods=["*"],
|
|
allow_headers=["*"],
|
|
)
|
|
|
|
|
|
@app.middleware("http")
|
|
async def commit_session_after_request(request: Request, call_next):
|
|
response = await call_next(request)
|
|
log.debug("Commit session after request")
|
|
Session.commit()
|
|
return response
|
|
|
|
|
|
@app.middleware("http")
|
|
async def check_url(request: Request, call_next):
|
|
if len(app.state.MODELS) == 0:
|
|
await get_all_models()
|
|
else:
|
|
pass
|
|
|
|
start_time = int(time.time())
|
|
response = await call_next(request)
|
|
process_time = int(time.time()) - start_time
|
|
response.headers["X-Process-Time"] = str(process_time)
|
|
|
|
return response
|
|
|
|
|
|
@app.middleware("http")
|
|
async def update_embedding_function(request: Request, call_next):
|
|
response = await call_next(request)
|
|
if "/embedding/update" in request.url.path:
|
|
webui_app.state.EMBEDDING_FUNCTION = rag_app.state.EMBEDDING_FUNCTION
|
|
return response
|
|
|
|
|
|
app.mount("/ws", socket_app)
|
|
|
|
app.mount("/ollama", ollama_app)
|
|
app.mount("/openai", openai_app)
|
|
|
|
app.mount("/images/api/v1", images_app)
|
|
app.mount("/audio/api/v1", audio_app)
|
|
app.mount("/rag/api/v1", rag_app)
|
|
|
|
app.mount("/api/v1", webui_app)
|
|
|
|
webui_app.state.EMBEDDING_FUNCTION = rag_app.state.EMBEDDING_FUNCTION
|
|
|
|
|
|
async def get_all_models():
|
|
pipe_models = []
|
|
openai_models = []
|
|
ollama_models = []
|
|
|
|
pipe_models = await get_pipe_models()
|
|
|
|
if app.state.config.ENABLE_OPENAI_API:
|
|
openai_models = await get_openai_models()
|
|
openai_models = openai_models["data"]
|
|
|
|
if app.state.config.ENABLE_OLLAMA_API:
|
|
ollama_models = await get_ollama_models()
|
|
ollama_models = [
|
|
{
|
|
"id": model["model"],
|
|
"name": model["name"],
|
|
"object": "model",
|
|
"created": int(time.time()),
|
|
"owned_by": "ollama",
|
|
"ollama": model,
|
|
}
|
|
for model in ollama_models["models"]
|
|
]
|
|
|
|
models = pipe_models + openai_models + ollama_models
|
|
|
|
custom_models = Models.get_all_models()
|
|
for custom_model in custom_models:
|
|
if custom_model.base_model_id == None:
|
|
for model in models:
|
|
if (
|
|
custom_model.id == model["id"]
|
|
or custom_model.id == model["id"].split(":")[0]
|
|
):
|
|
model["name"] = custom_model.name
|
|
model["info"] = custom_model.model_dump()
|
|
else:
|
|
owned_by = "openai"
|
|
pipe = None
|
|
|
|
for model in models:
|
|
if (
|
|
custom_model.base_model_id == model["id"]
|
|
or custom_model.base_model_id == model["id"].split(":")[0]
|
|
):
|
|
owned_by = model["owned_by"]
|
|
if "pipe" in model:
|
|
pipe = model["pipe"]
|
|
break
|
|
|
|
models.append(
|
|
{
|
|
"id": custom_model.id,
|
|
"name": custom_model.name,
|
|
"object": "model",
|
|
"created": custom_model.created_at,
|
|
"owned_by": owned_by,
|
|
"info": custom_model.model_dump(),
|
|
"preset": True,
|
|
**({"pipe": pipe} if pipe is not None else {}),
|
|
}
|
|
)
|
|
|
|
app.state.MODELS = {model["id"]: model for model in models}
|
|
webui_app.state.MODELS = app.state.MODELS
|
|
|
|
return models
|
|
|
|
|
|
@app.get("/api/models")
|
|
async def get_models(user=Depends(get_verified_user)):
|
|
models = await get_all_models()
|
|
|
|
# Filter out filter pipelines
|
|
models = [
|
|
model
|
|
for model in models
|
|
if "pipeline" not in model or model["pipeline"].get("type", None) != "filter"
|
|
]
|
|
|
|
if app.state.config.ENABLE_MODEL_FILTER:
|
|
if user.role == "user":
|
|
models = list(
|
|
filter(
|
|
lambda model: model["id"] in app.state.config.MODEL_FILTER_LIST,
|
|
models,
|
|
)
|
|
)
|
|
return {"data": models}
|
|
|
|
return {"data": models}
|
|
|
|
|
|
@app.post("/api/chat/completions")
|
|
async def generate_chat_completions(form_data: dict, user=Depends(get_verified_user)):
|
|
model_id = form_data["model"]
|
|
if model_id not in app.state.MODELS:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_404_NOT_FOUND,
|
|
detail="Model not found",
|
|
)
|
|
|
|
model = app.state.MODELS[model_id]
|
|
|
|
pipe = model.get("pipe")
|
|
if pipe:
|
|
return await generate_function_chat_completion(form_data, user=user)
|
|
if model["owned_by"] == "ollama":
|
|
return await generate_ollama_chat_completion(form_data, user=user)
|
|
else:
|
|
return await generate_openai_chat_completion(form_data, user=user)
|
|
|
|
|
|
@app.post("/api/chat/completed")
|
|
async def chat_completed(form_data: dict, user=Depends(get_verified_user)):
|
|
data = form_data
|
|
model_id = data["model"]
|
|
if model_id not in app.state.MODELS:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_404_NOT_FOUND,
|
|
detail="Model not found",
|
|
)
|
|
model = app.state.MODELS[model_id]
|
|
|
|
sorted_filters = get_sorted_filters(model_id)
|
|
if "pipeline" in model:
|
|
sorted_filters = [model] + sorted_filters
|
|
|
|
for filter in sorted_filters:
|
|
r = None
|
|
try:
|
|
urlIdx = filter["urlIdx"]
|
|
|
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
|
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
|
|
|
|
if key != "":
|
|
headers = {"Authorization": f"Bearer {key}"}
|
|
r = requests.post(
|
|
f"{url}/{filter['id']}/filter/outlet",
|
|
headers=headers,
|
|
json={
|
|
"user": {
|
|
"id": user.id,
|
|
"name": user.name,
|
|
"email": user.email,
|
|
"role": user.role,
|
|
},
|
|
"body": data,
|
|
},
|
|
)
|
|
|
|
r.raise_for_status()
|
|
data = r.json()
|
|
except Exception as e:
|
|
# Handle connection error here
|
|
print(f"Connection error: {e}")
|
|
|
|
if r is not None:
|
|
try:
|
|
res = r.json()
|
|
if "detail" in res:
|
|
return JSONResponse(
|
|
status_code=r.status_code,
|
|
content=res,
|
|
)
|
|
except:
|
|
pass
|
|
|
|
else:
|
|
pass
|
|
|
|
async def __event_emitter__(event_data):
|
|
await sio.emit(
|
|
"chat-events",
|
|
{
|
|
"chat_id": data["chat_id"],
|
|
"message_id": data["id"],
|
|
"data": event_data,
|
|
},
|
|
to=data["session_id"],
|
|
)
|
|
|
|
async def __event_call__(event_data):
|
|
response = await sio.call(
|
|
"chat-events",
|
|
{"chat_id": data["chat_id"], "message_id": data["id"], "data": event_data},
|
|
to=data["session_id"],
|
|
)
|
|
return response
|
|
|
|
def get_priority(function_id):
|
|
function = Functions.get_function_by_id(function_id)
|
|
if function is not None and hasattr(function, "valves"):
|
|
return (function.valves if function.valves else {}).get("priority", 0)
|
|
return 0
|
|
|
|
filter_ids = [function.id for function in Functions.get_global_filter_functions()]
|
|
if "info" in model and "meta" in model["info"]:
|
|
filter_ids.extend(model["info"]["meta"].get("filterIds", []))
|
|
filter_ids = list(set(filter_ids))
|
|
|
|
enabled_filter_ids = [
|
|
function.id
|
|
for function in Functions.get_functions_by_type("filter", active_only=True)
|
|
]
|
|
filter_ids = [
|
|
filter_id for filter_id in filter_ids if filter_id in enabled_filter_ids
|
|
]
|
|
|
|
# Sort filter_ids by priority, using the get_priority function
|
|
filter_ids.sort(key=get_priority)
|
|
|
|
for filter_id in filter_ids:
|
|
filter = Functions.get_function_by_id(filter_id)
|
|
if not filter:
|
|
continue
|
|
|
|
if filter_id in webui_app.state.FUNCTIONS:
|
|
function_module = webui_app.state.FUNCTIONS[filter_id]
|
|
else:
|
|
function_module, _, _ = load_function_module_by_id(filter_id)
|
|
webui_app.state.FUNCTIONS[filter_id] = function_module
|
|
|
|
if hasattr(function_module, "valves") and hasattr(function_module, "Valves"):
|
|
valves = Functions.get_function_valves_by_id(filter_id)
|
|
function_module.valves = function_module.Valves(
|
|
**(valves if valves else {})
|
|
)
|
|
|
|
if not hasattr(function_module, "outlet"):
|
|
continue
|
|
try:
|
|
outlet = function_module.outlet
|
|
|
|
# Get the signature of the function
|
|
sig = inspect.signature(outlet)
|
|
params = {"body": data}
|
|
|
|
# Extra parameters to be passed to the function
|
|
extra_params = {
|
|
"__model__": model,
|
|
"__id__": filter_id,
|
|
"__event_emitter__": __event_emitter__,
|
|
"__event_call__": __event_call__,
|
|
}
|
|
|
|
# Add extra params in contained in function signature
|
|
for key, value in extra_params.items():
|
|
if key in sig.parameters:
|
|
params[key] = value
|
|
|
|
if "__user__" in sig.parameters:
|
|
__user__ = {
|
|
"id": user.id,
|
|
"email": user.email,
|
|
"name": user.name,
|
|
"role": user.role,
|
|
}
|
|
|
|
try:
|
|
if hasattr(function_module, "UserValves"):
|
|
__user__["valves"] = function_module.UserValves(
|
|
**Functions.get_user_valves_by_id_and_user_id(
|
|
filter_id, user.id
|
|
)
|
|
)
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
params = {**params, "__user__": __user__}
|
|
|
|
if inspect.iscoroutinefunction(outlet):
|
|
data = await outlet(**params)
|
|
else:
|
|
data = outlet(**params)
|
|
|
|
except Exception as e:
|
|
print(f"Error: {e}")
|
|
return JSONResponse(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
content={"detail": str(e)},
|
|
)
|
|
|
|
return data
|
|
|
|
|
|
##################################
|
|
#
|
|
# Task Endpoints
|
|
#
|
|
##################################
|
|
|
|
|
|
# TODO: Refactor task API endpoints below into a separate file
|
|
|
|
|
|
@app.get("/api/task/config")
|
|
async def get_task_config(user=Depends(get_verified_user)):
|
|
return {
|
|
"TASK_MODEL": app.state.config.TASK_MODEL,
|
|
"TASK_MODEL_EXTERNAL": app.state.config.TASK_MODEL_EXTERNAL,
|
|
"TITLE_GENERATION_PROMPT_TEMPLATE": app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE,
|
|
"SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE": app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE,
|
|
"SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD": app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD,
|
|
"TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE": app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE,
|
|
}
|
|
|
|
|
|
class TaskConfigForm(BaseModel):
|
|
TASK_MODEL: Optional[str]
|
|
TASK_MODEL_EXTERNAL: Optional[str]
|
|
TITLE_GENERATION_PROMPT_TEMPLATE: str
|
|
SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE: str
|
|
SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD: int
|
|
TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE: str
|
|
|
|
|
|
@app.post("/api/task/config/update")
|
|
async def update_task_config(form_data: TaskConfigForm, user=Depends(get_admin_user)):
|
|
app.state.config.TASK_MODEL = form_data.TASK_MODEL
|
|
app.state.config.TASK_MODEL_EXTERNAL = form_data.TASK_MODEL_EXTERNAL
|
|
app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE = (
|
|
form_data.TITLE_GENERATION_PROMPT_TEMPLATE
|
|
)
|
|
app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE = (
|
|
form_data.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE
|
|
)
|
|
app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD = (
|
|
form_data.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD
|
|
)
|
|
app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE = (
|
|
form_data.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE
|
|
)
|
|
|
|
return {
|
|
"TASK_MODEL": app.state.config.TASK_MODEL,
|
|
"TASK_MODEL_EXTERNAL": app.state.config.TASK_MODEL_EXTERNAL,
|
|
"TITLE_GENERATION_PROMPT_TEMPLATE": app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE,
|
|
"SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE": app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE,
|
|
"SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD": app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD,
|
|
"TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE": app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE,
|
|
}
|
|
|
|
|
|
@app.post("/api/task/title/completions")
|
|
async def generate_title(form_data: dict, user=Depends(get_verified_user)):
|
|
print("generate_title")
|
|
|
|
model_id = form_data["model"]
|
|
if model_id not in app.state.MODELS:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_404_NOT_FOUND,
|
|
detail="Model not found",
|
|
)
|
|
|
|
# Check if the user has a custom task model
|
|
# If the user has a custom task model, use that model
|
|
model_id = get_task_model_id(model_id)
|
|
|
|
print(model_id)
|
|
|
|
template = app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE
|
|
|
|
content = title_generation_template(
|
|
template,
|
|
form_data["prompt"],
|
|
{
|
|
"name": user.name,
|
|
"location": user.info.get("location") if user.info else None,
|
|
},
|
|
)
|
|
|
|
payload = {
|
|
"model": model_id,
|
|
"messages": [{"role": "user", "content": content}],
|
|
"stream": False,
|
|
"max_tokens": 50,
|
|
"chat_id": form_data.get("chat_id", None),
|
|
"task": TASKS.TITLE_GENERATION,
|
|
}
|
|
|
|
log.debug(payload)
|
|
|
|
try:
|
|
payload = filter_pipeline(payload, user)
|
|
except Exception as e:
|
|
return JSONResponse(
|
|
status_code=e.args[0],
|
|
content={"detail": e.args[1]},
|
|
)
|
|
|
|
if "chat_id" in payload:
|
|
del payload["chat_id"]
|
|
|
|
return await generate_chat_completions(form_data=payload, user=user)
|
|
|
|
|
|
@app.post("/api/task/query/completions")
|
|
async def generate_search_query(form_data: dict, user=Depends(get_verified_user)):
|
|
print("generate_search_query")
|
|
|
|
if len(form_data["prompt"]) < app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
detail=f"Skip search query generation for short prompts (< {app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD} characters)",
|
|
)
|
|
|
|
model_id = form_data["model"]
|
|
if model_id not in app.state.MODELS:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_404_NOT_FOUND,
|
|
detail="Model not found",
|
|
)
|
|
|
|
# Check if the user has a custom task model
|
|
# If the user has a custom task model, use that model
|
|
model_id = get_task_model_id(model_id)
|
|
|
|
print(model_id)
|
|
|
|
template = app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE
|
|
|
|
content = search_query_generation_template(
|
|
template, form_data["prompt"], {"name": user.name}
|
|
)
|
|
|
|
payload = {
|
|
"model": model_id,
|
|
"messages": [{"role": "user", "content": content}],
|
|
"stream": False,
|
|
"max_tokens": 30,
|
|
"task": TASKS.QUERY_GENERATION,
|
|
}
|
|
|
|
print(payload)
|
|
|
|
try:
|
|
payload = filter_pipeline(payload, user)
|
|
except Exception as e:
|
|
return JSONResponse(
|
|
status_code=e.args[0],
|
|
content={"detail": e.args[1]},
|
|
)
|
|
|
|
if "chat_id" in payload:
|
|
del payload["chat_id"]
|
|
|
|
return await generate_chat_completions(form_data=payload, user=user)
|
|
|
|
|
|
@app.post("/api/task/emoji/completions")
|
|
async def generate_emoji(form_data: dict, user=Depends(get_verified_user)):
|
|
print("generate_emoji")
|
|
|
|
model_id = form_data["model"]
|
|
if model_id not in app.state.MODELS:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_404_NOT_FOUND,
|
|
detail="Model not found",
|
|
)
|
|
|
|
# Check if the user has a custom task model
|
|
# If the user has a custom task model, use that model
|
|
model_id = get_task_model_id(model_id)
|
|
|
|
print(model_id)
|
|
|
|
template = '''
|
|
Your task is to reflect the speaker's likely facial expression through a fitting emoji. Interpret emotions from the message and reflect their facial expression using fitting, diverse emojis (e.g., 😊, 😢, 😡, 😱).
|
|
|
|
Message: """{{prompt}}"""
|
|
'''
|
|
|
|
content = title_generation_template(
|
|
template,
|
|
form_data["prompt"],
|
|
{
|
|
"name": user.name,
|
|
"location": user.info.get("location") if user.info else None,
|
|
},
|
|
)
|
|
|
|
payload = {
|
|
"model": model_id,
|
|
"messages": [{"role": "user", "content": content}],
|
|
"stream": False,
|
|
"max_tokens": 4,
|
|
"chat_id": form_data.get("chat_id", None),
|
|
"task": TASKS.EMOJI_GENERATION,
|
|
}
|
|
|
|
log.debug(payload)
|
|
|
|
try:
|
|
payload = filter_pipeline(payload, user)
|
|
except Exception as e:
|
|
return JSONResponse(
|
|
status_code=e.args[0],
|
|
content={"detail": e.args[1]},
|
|
)
|
|
|
|
if "chat_id" in payload:
|
|
del payload["chat_id"]
|
|
|
|
return await generate_chat_completions(form_data=payload, user=user)
|
|
|
|
|
|
@app.post("/api/task/tools/completions")
|
|
async def get_tools_function_calling(form_data: dict, user=Depends(get_verified_user)):
|
|
print("get_tools_function_calling")
|
|
|
|
model_id = form_data["model"]
|
|
if model_id not in app.state.MODELS:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_404_NOT_FOUND,
|
|
detail="Model not found",
|
|
)
|
|
|
|
# Check if the user has a custom task model
|
|
# If the user has a custom task model, use that model
|
|
model_id = get_task_model_id(model_id)
|
|
|
|
print(model_id)
|
|
template = app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE
|
|
|
|
try:
|
|
context, _, _ = await get_function_call_response(
|
|
form_data["messages"],
|
|
form_data.get("files", []),
|
|
form_data["tool_id"],
|
|
template,
|
|
model_id,
|
|
user,
|
|
)
|
|
return context
|
|
except Exception as e:
|
|
return JSONResponse(
|
|
status_code=e.args[0],
|
|
content={"detail": e.args[1]},
|
|
)
|
|
|
|
|
|
##################################
|
|
#
|
|
# Pipelines Endpoints
|
|
#
|
|
##################################
|
|
|
|
|
|
# TODO: Refactor pipelines API endpoints below into a separate file
|
|
|
|
|
|
@app.get("/api/pipelines/list")
|
|
async def get_pipelines_list(user=Depends(get_admin_user)):
|
|
responses = await get_openai_models(raw=True)
|
|
|
|
print(responses)
|
|
urlIdxs = [
|
|
idx
|
|
for idx, response in enumerate(responses)
|
|
if response != None and "pipelines" in response
|
|
]
|
|
|
|
return {
|
|
"data": [
|
|
{
|
|
"url": openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx],
|
|
"idx": urlIdx,
|
|
}
|
|
for urlIdx in urlIdxs
|
|
]
|
|
}
|
|
|
|
|
|
@app.post("/api/pipelines/upload")
|
|
async def upload_pipeline(
|
|
urlIdx: int = Form(...), file: UploadFile = File(...), user=Depends(get_admin_user)
|
|
):
|
|
print("upload_pipeline", urlIdx, file.filename)
|
|
# Check if the uploaded file is a python file
|
|
if not file.filename.endswith(".py"):
|
|
raise HTTPException(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
detail="Only Python (.py) files are allowed.",
|
|
)
|
|
|
|
upload_folder = f"{CACHE_DIR}/pipelines"
|
|
os.makedirs(upload_folder, exist_ok=True)
|
|
file_path = os.path.join(upload_folder, file.filename)
|
|
|
|
r = None
|
|
try:
|
|
# Save the uploaded file
|
|
with open(file_path, "wb") as buffer:
|
|
shutil.copyfileobj(file.file, buffer)
|
|
|
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
|
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
|
|
|
|
headers = {"Authorization": f"Bearer {key}"}
|
|
|
|
with open(file_path, "rb") as f:
|
|
files = {"file": f}
|
|
r = requests.post(f"{url}/pipelines/upload", headers=headers, files=files)
|
|
|
|
r.raise_for_status()
|
|
data = r.json()
|
|
|
|
return {**data}
|
|
except Exception as e:
|
|
# Handle connection error here
|
|
print(f"Connection error: {e}")
|
|
|
|
detail = "Pipeline not found"
|
|
status_code = status.HTTP_404_NOT_FOUND
|
|
if r is not None:
|
|
status_code = r.status_code
|
|
try:
|
|
res = r.json()
|
|
if "detail" in res:
|
|
detail = res["detail"]
|
|
except:
|
|
pass
|
|
|
|
raise HTTPException(
|
|
status_code=status_code,
|
|
detail=detail,
|
|
)
|
|
finally:
|
|
# Ensure the file is deleted after the upload is completed or on failure
|
|
if os.path.exists(file_path):
|
|
os.remove(file_path)
|
|
|
|
|
|
class AddPipelineForm(BaseModel):
|
|
url: str
|
|
urlIdx: int
|
|
|
|
|
|
@app.post("/api/pipelines/add")
|
|
async def add_pipeline(form_data: AddPipelineForm, user=Depends(get_admin_user)):
|
|
|
|
r = None
|
|
try:
|
|
urlIdx = form_data.urlIdx
|
|
|
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
|
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
|
|
|
|
headers = {"Authorization": f"Bearer {key}"}
|
|
r = requests.post(
|
|
f"{url}/pipelines/add", headers=headers, json={"url": form_data.url}
|
|
)
|
|
|
|
r.raise_for_status()
|
|
data = r.json()
|
|
|
|
return {**data}
|
|
except Exception as e:
|
|
# Handle connection error here
|
|
print(f"Connection error: {e}")
|
|
|
|
detail = "Pipeline not found"
|
|
if r is not None:
|
|
try:
|
|
res = r.json()
|
|
if "detail" in res:
|
|
detail = res["detail"]
|
|
except:
|
|
pass
|
|
|
|
raise HTTPException(
|
|
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND),
|
|
detail=detail,
|
|
)
|
|
|
|
|
|
class DeletePipelineForm(BaseModel):
|
|
id: str
|
|
urlIdx: int
|
|
|
|
|
|
@app.delete("/api/pipelines/delete")
|
|
async def delete_pipeline(form_data: DeletePipelineForm, user=Depends(get_admin_user)):
|
|
|
|
r = None
|
|
try:
|
|
urlIdx = form_data.urlIdx
|
|
|
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
|
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
|
|
|
|
headers = {"Authorization": f"Bearer {key}"}
|
|
r = requests.delete(
|
|
f"{url}/pipelines/delete", headers=headers, json={"id": form_data.id}
|
|
)
|
|
|
|
r.raise_for_status()
|
|
data = r.json()
|
|
|
|
return {**data}
|
|
except Exception as e:
|
|
# Handle connection error here
|
|
print(f"Connection error: {e}")
|
|
|
|
detail = "Pipeline not found"
|
|
if r is not None:
|
|
try:
|
|
res = r.json()
|
|
if "detail" in res:
|
|
detail = res["detail"]
|
|
except:
|
|
pass
|
|
|
|
raise HTTPException(
|
|
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND),
|
|
detail=detail,
|
|
)
|
|
|
|
|
|
@app.get("/api/pipelines")
|
|
async def get_pipelines(urlIdx: Optional[int] = None, user=Depends(get_admin_user)):
|
|
r = None
|
|
try:
|
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
|
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
|
|
|
|
headers = {"Authorization": f"Bearer {key}"}
|
|
r = requests.get(f"{url}/pipelines", headers=headers)
|
|
|
|
r.raise_for_status()
|
|
data = r.json()
|
|
|
|
return {**data}
|
|
except Exception as e:
|
|
# Handle connection error here
|
|
print(f"Connection error: {e}")
|
|
|
|
detail = "Pipeline not found"
|
|
if r is not None:
|
|
try:
|
|
res = r.json()
|
|
if "detail" in res:
|
|
detail = res["detail"]
|
|
except:
|
|
pass
|
|
|
|
raise HTTPException(
|
|
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND),
|
|
detail=detail,
|
|
)
|
|
|
|
|
|
@app.get("/api/pipelines/{pipeline_id}/valves")
|
|
async def get_pipeline_valves(
|
|
urlIdx: Optional[int],
|
|
pipeline_id: str,
|
|
user=Depends(get_admin_user),
|
|
):
|
|
models = await get_all_models()
|
|
r = None
|
|
try:
|
|
|
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
|
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
|
|
|
|
headers = {"Authorization": f"Bearer {key}"}
|
|
r = requests.get(f"{url}/{pipeline_id}/valves", headers=headers)
|
|
|
|
r.raise_for_status()
|
|
data = r.json()
|
|
|
|
return {**data}
|
|
except Exception as e:
|
|
# Handle connection error here
|
|
print(f"Connection error: {e}")
|
|
|
|
detail = "Pipeline not found"
|
|
|
|
if r is not None:
|
|
try:
|
|
res = r.json()
|
|
if "detail" in res:
|
|
detail = res["detail"]
|
|
except:
|
|
pass
|
|
|
|
raise HTTPException(
|
|
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND),
|
|
detail=detail,
|
|
)
|
|
|
|
|
|
@app.get("/api/pipelines/{pipeline_id}/valves/spec")
|
|
async def get_pipeline_valves_spec(
|
|
urlIdx: Optional[int],
|
|
pipeline_id: str,
|
|
user=Depends(get_admin_user),
|
|
):
|
|
models = await get_all_models()
|
|
|
|
r = None
|
|
try:
|
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
|
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
|
|
|
|
headers = {"Authorization": f"Bearer {key}"}
|
|
r = requests.get(f"{url}/{pipeline_id}/valves/spec", headers=headers)
|
|
|
|
r.raise_for_status()
|
|
data = r.json()
|
|
|
|
return {**data}
|
|
except Exception as e:
|
|
# Handle connection error here
|
|
print(f"Connection error: {e}")
|
|
|
|
detail = "Pipeline not found"
|
|
if r is not None:
|
|
try:
|
|
res = r.json()
|
|
if "detail" in res:
|
|
detail = res["detail"]
|
|
except:
|
|
pass
|
|
|
|
raise HTTPException(
|
|
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND),
|
|
detail=detail,
|
|
)
|
|
|
|
|
|
@app.post("/api/pipelines/{pipeline_id}/valves/update")
|
|
async def update_pipeline_valves(
|
|
urlIdx: Optional[int],
|
|
pipeline_id: str,
|
|
form_data: dict,
|
|
user=Depends(get_admin_user),
|
|
):
|
|
models = await get_all_models()
|
|
|
|
r = None
|
|
try:
|
|
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx]
|
|
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx]
|
|
|
|
headers = {"Authorization": f"Bearer {key}"}
|
|
r = requests.post(
|
|
f"{url}/{pipeline_id}/valves/update",
|
|
headers=headers,
|
|
json={**form_data},
|
|
)
|
|
|
|
r.raise_for_status()
|
|
data = r.json()
|
|
|
|
return {**data}
|
|
except Exception as e:
|
|
# Handle connection error here
|
|
print(f"Connection error: {e}")
|
|
|
|
detail = "Pipeline not found"
|
|
|
|
if r is not None:
|
|
try:
|
|
res = r.json()
|
|
if "detail" in res:
|
|
detail = res["detail"]
|
|
except:
|
|
pass
|
|
|
|
raise HTTPException(
|
|
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND),
|
|
detail=detail,
|
|
)
|
|
|
|
|
|
##################################
|
|
#
|
|
# Config Endpoints
|
|
#
|
|
##################################
|
|
|
|
|
|
@app.get("/api/config")
|
|
async def get_app_config():
|
|
return {
|
|
"status": True,
|
|
"name": WEBUI_NAME,
|
|
"version": VERSION,
|
|
"default_locale": str(DEFAULT_LOCALE),
|
|
"default_models": webui_app.state.config.DEFAULT_MODELS,
|
|
"default_prompt_suggestions": webui_app.state.config.DEFAULT_PROMPT_SUGGESTIONS,
|
|
"features": {
|
|
"auth": WEBUI_AUTH,
|
|
"auth_trusted_header": bool(webui_app.state.AUTH_TRUSTED_EMAIL_HEADER),
|
|
"enable_signup": webui_app.state.config.ENABLE_SIGNUP,
|
|
"enable_web_search": rag_app.state.config.ENABLE_RAG_WEB_SEARCH,
|
|
"enable_image_generation": images_app.state.config.ENABLED,
|
|
"enable_community_sharing": webui_app.state.config.ENABLE_COMMUNITY_SHARING,
|
|
"enable_admin_export": ENABLE_ADMIN_EXPORT,
|
|
},
|
|
"audio": {
|
|
"tts": {
|
|
"engine": audio_app.state.config.TTS_ENGINE,
|
|
"voice": audio_app.state.config.TTS_VOICE,
|
|
},
|
|
"stt": {
|
|
"engine": audio_app.state.config.STT_ENGINE,
|
|
},
|
|
},
|
|
"oauth": {
|
|
"providers": {
|
|
name: config.get("name", name)
|
|
for name, config in OAUTH_PROVIDERS.items()
|
|
}
|
|
},
|
|
}
|
|
|
|
|
|
@app.get("/api/config/model/filter")
|
|
async def get_model_filter_config(user=Depends(get_admin_user)):
|
|
return {
|
|
"enabled": app.state.config.ENABLE_MODEL_FILTER,
|
|
"models": app.state.config.MODEL_FILTER_LIST,
|
|
}
|
|
|
|
|
|
class ModelFilterConfigForm(BaseModel):
|
|
enabled: bool
|
|
models: List[str]
|
|
|
|
|
|
@app.post("/api/config/model/filter")
|
|
async def update_model_filter_config(
|
|
form_data: ModelFilterConfigForm, user=Depends(get_admin_user)
|
|
):
|
|
app.state.config.ENABLE_MODEL_FILTER = form_data.enabled
|
|
app.state.config.MODEL_FILTER_LIST = form_data.models
|
|
|
|
return {
|
|
"enabled": app.state.config.ENABLE_MODEL_FILTER,
|
|
"models": app.state.config.MODEL_FILTER_LIST,
|
|
}
|
|
|
|
|
|
# TODO: webhook endpoint should be under config endpoints
|
|
|
|
|
|
@app.get("/api/webhook")
|
|
async def get_webhook_url(user=Depends(get_admin_user)):
|
|
return {
|
|
"url": app.state.config.WEBHOOK_URL,
|
|
}
|
|
|
|
|
|
class UrlForm(BaseModel):
|
|
url: str
|
|
|
|
|
|
@app.post("/api/webhook")
|
|
async def update_webhook_url(form_data: UrlForm, user=Depends(get_admin_user)):
|
|
app.state.config.WEBHOOK_URL = form_data.url
|
|
webui_app.state.WEBHOOK_URL = app.state.config.WEBHOOK_URL
|
|
return {"url": app.state.config.WEBHOOK_URL}
|
|
|
|
|
|
@app.get("/api/version")
|
|
async def get_app_config():
|
|
return {
|
|
"version": VERSION,
|
|
}
|
|
|
|
|
|
@app.get("/api/changelog")
|
|
async def get_app_changelog():
|
|
return {key: CHANGELOG[key] for idx, key in enumerate(CHANGELOG) if idx < 5}
|
|
|
|
|
|
@app.get("/api/version/updates")
|
|
async def get_app_latest_release_version():
|
|
try:
|
|
async with aiohttp.ClientSession(trust_env=True) as session:
|
|
async with session.get(
|
|
"https://api.github.com/repos/open-webui/open-webui/releases/latest"
|
|
) as response:
|
|
response.raise_for_status()
|
|
data = await response.json()
|
|
latest_version = data["tag_name"]
|
|
|
|
return {"current": VERSION, "latest": latest_version[1:]}
|
|
except aiohttp.ClientError as e:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_503_SERVICE_UNAVAILABLE,
|
|
detail=ERROR_MESSAGES.RATE_LIMIT_EXCEEDED,
|
|
)
|
|
|
|
|
|
############################
|
|
# OAuth Login & Callback
|
|
############################
|
|
|
|
oauth = OAuth()
|
|
|
|
for provider_name, provider_config in OAUTH_PROVIDERS.items():
|
|
oauth.register(
|
|
name=provider_name,
|
|
client_id=provider_config["client_id"],
|
|
client_secret=provider_config["client_secret"],
|
|
server_metadata_url=provider_config["server_metadata_url"],
|
|
client_kwargs={
|
|
"scope": provider_config["scope"],
|
|
},
|
|
)
|
|
|
|
# SessionMiddleware is used by authlib for oauth
|
|
if len(OAUTH_PROVIDERS) > 0:
|
|
app.add_middleware(
|
|
SessionMiddleware,
|
|
secret_key=WEBUI_SECRET_KEY,
|
|
session_cookie="oui-session",
|
|
same_site=WEBUI_SESSION_COOKIE_SAME_SITE,
|
|
https_only=WEBUI_SESSION_COOKIE_SECURE,
|
|
)
|
|
|
|
|
|
@app.get("/oauth/{provider}/login")
|
|
async def oauth_login(provider: str, request: Request):
|
|
if provider not in OAUTH_PROVIDERS:
|
|
raise HTTPException(404)
|
|
redirect_uri = request.url_for("oauth_callback", provider=provider)
|
|
return await oauth.create_client(provider).authorize_redirect(request, redirect_uri)
|
|
|
|
|
|
# OAuth login logic is as follows:
|
|
# 1. Attempt to find a user with matching subject ID, tied to the provider
|
|
# 2. If OAUTH_MERGE_ACCOUNTS_BY_EMAIL is true, find a user with the email address provided via OAuth
|
|
# - This is considered insecure in general, as OAuth providers do not always verify email addresses
|
|
# 3. If there is no user, and ENABLE_OAUTH_SIGNUP is true, create a user
|
|
# - Email addresses are considered unique, so we fail registration if the email address is alreayd taken
|
|
@app.get("/oauth/{provider}/callback")
|
|
async def oauth_callback(provider: str, request: Request, response: Response):
|
|
if provider not in OAUTH_PROVIDERS:
|
|
raise HTTPException(404)
|
|
client = oauth.create_client(provider)
|
|
try:
|
|
token = await client.authorize_access_token(request)
|
|
except Exception as e:
|
|
log.warning(f"OAuth callback error: {e}")
|
|
raise HTTPException(400, detail=ERROR_MESSAGES.INVALID_CRED)
|
|
user_data: UserInfo = token["userinfo"]
|
|
|
|
sub = user_data.get("sub")
|
|
if not sub:
|
|
log.warning(f"OAuth callback failed, sub is missing: {user_data}")
|
|
raise HTTPException(400, detail=ERROR_MESSAGES.INVALID_CRED)
|
|
provider_sub = f"{provider}@{sub}"
|
|
email = user_data.get("email", "").lower()
|
|
# We currently mandate that email addresses are provided
|
|
if not email:
|
|
log.warning(f"OAuth callback failed, email is missing: {user_data}")
|
|
raise HTTPException(400, detail=ERROR_MESSAGES.INVALID_CRED)
|
|
|
|
# Check if the user exists
|
|
user = Users.get_user_by_oauth_sub(provider_sub)
|
|
|
|
if not user:
|
|
# If the user does not exist, check if merging is enabled
|
|
if OAUTH_MERGE_ACCOUNTS_BY_EMAIL.value:
|
|
# Check if the user exists by email
|
|
user = Users.get_user_by_email(email)
|
|
if user:
|
|
# Update the user with the new oauth sub
|
|
Users.update_user_oauth_sub_by_id(user.id, provider_sub)
|
|
|
|
if not user:
|
|
# If the user does not exist, check if signups are enabled
|
|
if ENABLE_OAUTH_SIGNUP.value:
|
|
# Check if an existing user with the same email already exists
|
|
existing_user = Users.get_user_by_email(user_data.get("email", "").lower())
|
|
if existing_user:
|
|
raise HTTPException(400, detail=ERROR_MESSAGES.EMAIL_TAKEN)
|
|
|
|
picture_claim = webui_app.state.config.OAUTH_PICTURE_CLAIM
|
|
picture_url = user_data.get(picture_claim, "")
|
|
if picture_url:
|
|
# Download the profile image into a base64 string
|
|
try:
|
|
async with aiohttp.ClientSession() as session:
|
|
async with session.get(picture_url) as resp:
|
|
picture = await resp.read()
|
|
base64_encoded_picture = base64.b64encode(picture).decode(
|
|
"utf-8"
|
|
)
|
|
guessed_mime_type = mimetypes.guess_type(picture_url)[0]
|
|
if guessed_mime_type is None:
|
|
# assume JPG, browsers are tolerant enough of image formats
|
|
guessed_mime_type = "image/jpeg"
|
|
picture_url = f"data:{guessed_mime_type};base64,{base64_encoded_picture}"
|
|
except Exception as e:
|
|
log.error(f"Error downloading profile image '{picture_url}': {e}")
|
|
picture_url = ""
|
|
if not picture_url:
|
|
picture_url = "/user.png"
|
|
username_claim = webui_app.state.config.OAUTH_USERNAME_CLAIM
|
|
role = (
|
|
"admin"
|
|
if Users.get_num_users() == 0
|
|
else webui_app.state.config.DEFAULT_USER_ROLE
|
|
)
|
|
user = Auths.insert_new_auth(
|
|
email=email,
|
|
password=get_password_hash(
|
|
str(uuid.uuid4())
|
|
), # Random password, not used
|
|
name=user_data.get(username_claim, "User"),
|
|
profile_image_url=picture_url,
|
|
role=role,
|
|
oauth_sub=provider_sub,
|
|
)
|
|
|
|
if webui_app.state.config.WEBHOOK_URL:
|
|
post_webhook(
|
|
webui_app.state.config.WEBHOOK_URL,
|
|
WEBHOOK_MESSAGES.USER_SIGNUP(user.name),
|
|
{
|
|
"action": "signup",
|
|
"message": WEBHOOK_MESSAGES.USER_SIGNUP(user.name),
|
|
"user": user.model_dump_json(exclude_none=True),
|
|
},
|
|
)
|
|
else:
|
|
raise HTTPException(
|
|
status.HTTP_403_FORBIDDEN, detail=ERROR_MESSAGES.ACCESS_PROHIBITED
|
|
)
|
|
|
|
jwt_token = create_token(
|
|
data={"id": user.id},
|
|
expires_delta=parse_duration(webui_app.state.config.JWT_EXPIRES_IN),
|
|
)
|
|
|
|
# Set the cookie token
|
|
response.set_cookie(
|
|
key="token",
|
|
value=jwt_token,
|
|
httponly=True, # Ensures the cookie is not accessible via JavaScript
|
|
)
|
|
|
|
# Redirect back to the frontend with the JWT token
|
|
redirect_url = f"{request.base_url}auth#token={jwt_token}"
|
|
return RedirectResponse(url=redirect_url)
|
|
|
|
|
|
@app.get("/manifest.json")
|
|
async def get_manifest_json():
|
|
return {
|
|
"name": WEBUI_NAME,
|
|
"short_name": WEBUI_NAME,
|
|
"start_url": "/",
|
|
"display": "standalone",
|
|
"background_color": "#343541",
|
|
"orientation": "portrait-primary",
|
|
"icons": [{"src": "/static/logo.png", "type": "image/png", "sizes": "500x500"}],
|
|
}
|
|
|
|
|
|
@app.get("/opensearch.xml")
|
|
async def get_opensearch_xml():
|
|
xml_content = rf"""
|
|
<OpenSearchDescription xmlns="http://a9.com/-/spec/opensearch/1.1/" xmlns:moz="http://www.mozilla.org/2006/browser/search/">
|
|
<ShortName>{WEBUI_NAME}</ShortName>
|
|
<Description>Search {WEBUI_NAME}</Description>
|
|
<InputEncoding>UTF-8</InputEncoding>
|
|
<Image width="16" height="16" type="image/x-icon">{WEBUI_URL}/static/favicon.png</Image>
|
|
<Url type="text/html" method="get" template="{WEBUI_URL}/?q={"{searchTerms}"}"/>
|
|
<moz:SearchForm>{WEBUI_URL}</moz:SearchForm>
|
|
</OpenSearchDescription>
|
|
"""
|
|
return Response(content=xml_content, media_type="application/xml")
|
|
|
|
|
|
@app.get("/health")
|
|
async def healthcheck():
|
|
return {"status": True}
|
|
|
|
|
|
@app.get("/health/db")
|
|
async def healthcheck_with_db():
|
|
Session.execute(text("SELECT 1;")).all()
|
|
return {"status": True}
|
|
|
|
|
|
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static")
|
|
app.mount("/cache", StaticFiles(directory=CACHE_DIR), name="cache")
|
|
|
|
if os.path.exists(FRONTEND_BUILD_DIR):
|
|
mimetypes.add_type("text/javascript", ".js")
|
|
app.mount(
|
|
"/",
|
|
SPAStaticFiles(directory=FRONTEND_BUILD_DIR, html=True),
|
|
name="spa-static-files",
|
|
)
|
|
else:
|
|
log.warning(
|
|
f"Frontend build directory not found at '{FRONTEND_BUILD_DIR}'. Serving API only."
|
|
)
|