mirror of
https://github.com/open-webui/open-webui
synced 2024-11-25 05:18:15 +00:00
174 lines
5.9 KiB
Python
174 lines
5.9 KiB
Python
from pymilvus import MilvusClient as Client
|
|
from pymilvus import FieldSchema, DataType
|
|
import json
|
|
|
|
from typing import Optional
|
|
|
|
from open_webui.apps.rag.vector.main import VectorItem, QueryResult
|
|
from open_webui.config import (
|
|
MILVUS_URI,
|
|
)
|
|
|
|
|
|
class MilvusClient:
|
|
def __init__(self):
|
|
self.collection_prefix = "open_webui"
|
|
self.client = Client(uri=MILVUS_URI)
|
|
|
|
def _result_to_query_result(self, result) -> QueryResult:
|
|
print(result)
|
|
|
|
ids = []
|
|
distances = []
|
|
documents = []
|
|
metadatas = []
|
|
|
|
for match in result:
|
|
_ids = []
|
|
_distances = []
|
|
_documents = []
|
|
_metadatas = []
|
|
|
|
for item in match:
|
|
_ids.append(item.get("id"))
|
|
_distances.append(item.get("distance"))
|
|
_documents.append(item.get("entity", {}).get("data", {}).get("text"))
|
|
_metadatas.append(item.get("entity", {}).get("metadata"))
|
|
|
|
ids.append(_ids)
|
|
distances.append(_distances)
|
|
documents.append(_documents)
|
|
metadatas.append(_metadatas)
|
|
|
|
return {
|
|
"ids": ids,
|
|
"distances": distances,
|
|
"documents": documents,
|
|
"metadatas": metadatas,
|
|
}
|
|
|
|
def _create_collection(self, collection_name: str, dimension: int):
|
|
schema = self.client.create_schema(
|
|
auto_id=False,
|
|
enable_dynamic_field=True,
|
|
)
|
|
schema.add_field(
|
|
field_name="id",
|
|
datatype=DataType.VARCHAR,
|
|
is_primary=True,
|
|
max_length=65535,
|
|
)
|
|
schema.add_field(
|
|
field_name="vector",
|
|
datatype=DataType.FLOAT_VECTOR,
|
|
dim=dimension,
|
|
description="vector",
|
|
)
|
|
schema.add_field(field_name="data", datatype=DataType.JSON, description="data")
|
|
schema.add_field(
|
|
field_name="metadata", datatype=DataType.JSON, description="metadata"
|
|
)
|
|
|
|
index_params = self.client.prepare_index_params()
|
|
index_params.add_index(
|
|
field_name="vector", index_type="HNSW", metric_type="COSINE", params={}
|
|
)
|
|
|
|
self.client.create_collection(
|
|
collection_name=f"{self.collection_prefix}_{collection_name}",
|
|
schema=schema,
|
|
index_params=index_params,
|
|
)
|
|
|
|
def has_collection(self, collection_name: str) -> bool:
|
|
# Check if the collection exists based on the collection name.
|
|
return self.client.has_collection(
|
|
collection_name=f"{self.collection_prefix}_{collection_name}"
|
|
)
|
|
|
|
def delete_collection(self, collection_name: str):
|
|
# Delete the collection based on the collection name.
|
|
return self.client.drop_collection(
|
|
collection_name=f"{self.collection_prefix}_{collection_name}"
|
|
)
|
|
|
|
def search(
|
|
self, collection_name: str, vectors: list[list[float | int]], limit: int
|
|
) -> Optional[QueryResult]:
|
|
# Search for the nearest neighbor items based on the vectors and return 'limit' number of results.
|
|
result = self.client.search(
|
|
collection_name=f"{self.collection_prefix}_{collection_name}",
|
|
data=vectors,
|
|
limit=limit,
|
|
output_fields=["data", "metadata"],
|
|
)
|
|
|
|
return self._result_to_query_result(result)
|
|
|
|
def get(self, collection_name: str) -> Optional[QueryResult]:
|
|
# Get all the items in the collection.
|
|
result = self.client.query(
|
|
collection_name=f"{self.collection_prefix}_{collection_name}",
|
|
)
|
|
return self._result_to_query_result(result)
|
|
|
|
def insert(self, collection_name: str, items: list[VectorItem]):
|
|
# Insert the items into the collection, if the collection does not exist, it will be created.
|
|
if not self.client.has_collection(
|
|
collection_name=f"{self.collection_prefix}_{collection_name}"
|
|
):
|
|
self._create_collection(
|
|
collection_name=collection_name, dimension=len(items[0]["vector"])
|
|
)
|
|
|
|
return self.client.insert(
|
|
collection_name=f"{self.collection_prefix}_{collection_name}",
|
|
data=[
|
|
{
|
|
"id": item["id"],
|
|
"vector": item["vector"],
|
|
"data": {"text": item["text"]},
|
|
"metadata": item["metadata"],
|
|
}
|
|
for item in items
|
|
],
|
|
)
|
|
|
|
def upsert(self, collection_name: str, items: list[VectorItem]):
|
|
# Update the items in the collection, if the items are not present, insert them. If the collection does not exist, it will be created.
|
|
if not self.client.has_collection(
|
|
collection_name=f"{self.collection_prefix}_{collection_name}"
|
|
):
|
|
self._create_collection(
|
|
collection_name=collection_name, dimension=len(items[0]["vector"])
|
|
)
|
|
|
|
return self.client.upsert(
|
|
collection_name=f"{self.collection_prefix}_{collection_name}",
|
|
data=[
|
|
{
|
|
"id": item["id"],
|
|
"vector": item["vector"],
|
|
"data": {"text": item["text"]},
|
|
"metadata": item["metadata"],
|
|
}
|
|
for item in items
|
|
],
|
|
)
|
|
|
|
def delete(self, collection_name: str, ids: list[str]):
|
|
# Delete the items from the collection based on the ids.
|
|
|
|
return self.client.delete(
|
|
collection_name=f"{self.collection_prefix}_{collection_name}",
|
|
ids=ids,
|
|
)
|
|
|
|
def reset(self):
|
|
# Resets the database. This will delete all collections and item entries.
|
|
|
|
collection_names = self.client.list_collections()
|
|
for collection_name in collection_names:
|
|
if collection_name.startswith(self.collection_prefix):
|
|
self.client.drop_collection(collection_name=collection_name)
|