mirror of
https://github.com/open-webui/open-webui
synced 2025-01-01 08:42:14 +00:00
193 lines
5.4 KiB
Python
193 lines
5.4 KiB
Python
import requests
|
|
import logging
|
|
import ftfy
|
|
import sys
|
|
|
|
from langchain_community.document_loaders import (
|
|
BSHTMLLoader,
|
|
CSVLoader,
|
|
Docx2txtLoader,
|
|
OutlookMessageLoader,
|
|
PyPDFLoader,
|
|
TextLoader,
|
|
UnstructuredEPubLoader,
|
|
UnstructuredExcelLoader,
|
|
UnstructuredMarkdownLoader,
|
|
UnstructuredPowerPointLoader,
|
|
UnstructuredRSTLoader,
|
|
UnstructuredXMLLoader,
|
|
YoutubeLoader,
|
|
)
|
|
from langchain_core.documents import Document
|
|
from open_webui.env import SRC_LOG_LEVELS, GLOBAL_LOG_LEVEL
|
|
|
|
logging.basicConfig(stream=sys.stdout, level=GLOBAL_LOG_LEVEL)
|
|
log = logging.getLogger(__name__)
|
|
log.setLevel(SRC_LOG_LEVELS["RAG"])
|
|
|
|
known_source_ext = [
|
|
"go",
|
|
"py",
|
|
"java",
|
|
"sh",
|
|
"bat",
|
|
"ps1",
|
|
"cmd",
|
|
"js",
|
|
"ts",
|
|
"css",
|
|
"cpp",
|
|
"hpp",
|
|
"h",
|
|
"c",
|
|
"cs",
|
|
"sql",
|
|
"log",
|
|
"ini",
|
|
"pl",
|
|
"pm",
|
|
"r",
|
|
"dart",
|
|
"dockerfile",
|
|
"env",
|
|
"php",
|
|
"hs",
|
|
"hsc",
|
|
"lua",
|
|
"nginxconf",
|
|
"conf",
|
|
"m",
|
|
"mm",
|
|
"plsql",
|
|
"perl",
|
|
"rb",
|
|
"rs",
|
|
"db2",
|
|
"scala",
|
|
"bash",
|
|
"swift",
|
|
"vue",
|
|
"svelte",
|
|
"msg",
|
|
"ex",
|
|
"exs",
|
|
"erl",
|
|
"tsx",
|
|
"jsx",
|
|
"hs",
|
|
"lhs",
|
|
]
|
|
|
|
|
|
class TikaLoader:
|
|
def __init__(self, url, file_path, mime_type=None):
|
|
self.url = url
|
|
self.file_path = file_path
|
|
self.mime_type = mime_type
|
|
|
|
def load(self) -> list[Document]:
|
|
with open(self.file_path, "rb") as f:
|
|
data = f.read()
|
|
|
|
if self.mime_type is not None:
|
|
headers = {"Content-Type": self.mime_type}
|
|
else:
|
|
headers = {}
|
|
|
|
endpoint = self.url
|
|
if not endpoint.endswith("/"):
|
|
endpoint += "/"
|
|
endpoint += "tika/text"
|
|
|
|
r = requests.put(endpoint, data=data, headers=headers)
|
|
|
|
if r.ok:
|
|
raw_metadata = r.json()
|
|
text = raw_metadata.get("X-TIKA:content", "<No text content found>")
|
|
|
|
if "Content-Type" in raw_metadata:
|
|
headers["Content-Type"] = raw_metadata["Content-Type"]
|
|
|
|
log.debug("Tika extracted text: %s", text)
|
|
|
|
return [Document(page_content=text, metadata=headers)]
|
|
else:
|
|
raise Exception(f"Error calling Tika: {r.reason}")
|
|
|
|
|
|
class Loader:
|
|
def __init__(self, engine: str = "", **kwargs):
|
|
self.engine = engine
|
|
self.kwargs = kwargs
|
|
|
|
def load(
|
|
self, filename: str, file_content_type: str, file_path: str
|
|
) -> list[Document]:
|
|
loader = self._get_loader(filename, file_content_type, file_path)
|
|
docs = loader.load()
|
|
|
|
return [
|
|
Document(
|
|
page_content=ftfy.fix_text(doc.page_content), metadata=doc.metadata
|
|
)
|
|
for doc in docs
|
|
]
|
|
|
|
def _get_loader(self, filename: str, file_content_type: str, file_path: str):
|
|
file_ext = filename.split(".")[-1].lower()
|
|
|
|
if self.engine == "tika" and self.kwargs.get("TIKA_SERVER_URL"):
|
|
if file_ext in known_source_ext or (
|
|
file_content_type and file_content_type.find("text/") >= 0
|
|
):
|
|
loader = TextLoader(file_path, autodetect_encoding=True)
|
|
else:
|
|
loader = TikaLoader(
|
|
url=self.kwargs.get("TIKA_SERVER_URL"),
|
|
file_path=file_path,
|
|
mime_type=file_content_type,
|
|
)
|
|
else:
|
|
if file_ext == "pdf":
|
|
loader = PyPDFLoader(
|
|
file_path, extract_images=self.kwargs.get("PDF_EXTRACT_IMAGES")
|
|
)
|
|
elif file_ext == "csv":
|
|
loader = CSVLoader(file_path)
|
|
elif file_ext == "rst":
|
|
loader = UnstructuredRSTLoader(file_path, mode="elements")
|
|
elif file_ext == "xml":
|
|
loader = UnstructuredXMLLoader(file_path)
|
|
elif file_ext in ["htm", "html"]:
|
|
loader = BSHTMLLoader(file_path, open_encoding="unicode_escape")
|
|
elif file_ext == "md":
|
|
loader = TextLoader(file_path, autodetect_encoding=True)
|
|
elif file_content_type == "application/epub+zip":
|
|
loader = UnstructuredEPubLoader(file_path)
|
|
elif (
|
|
file_content_type
|
|
== "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
|
|
or file_ext == "docx"
|
|
):
|
|
loader = Docx2txtLoader(file_path)
|
|
elif file_content_type in [
|
|
"application/vnd.ms-excel",
|
|
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
|
] or file_ext in ["xls", "xlsx"]:
|
|
loader = UnstructuredExcelLoader(file_path)
|
|
elif file_content_type in [
|
|
"application/vnd.ms-powerpoint",
|
|
"application/vnd.openxmlformats-officedocument.presentationml.presentation",
|
|
] or file_ext in ["ppt", "pptx"]:
|
|
loader = UnstructuredPowerPointLoader(file_path)
|
|
elif file_ext == "msg":
|
|
loader = OutlookMessageLoader(file_path)
|
|
elif file_ext in known_source_ext or (
|
|
file_content_type and file_content_type.find("text/") >= 0
|
|
):
|
|
loader = TextLoader(file_path, autodetect_encoding=True)
|
|
else:
|
|
loader = TextLoader(file_path, autodetect_encoding=True)
|
|
|
|
return loader
|