mirror of
https://github.com/open-webui/open-webui
synced 2025-01-04 01:53:31 +00:00
609 lines
20 KiB
Python
609 lines
20 KiB
Python
from fastapi import APIRouter, Depends, HTTPException, Response, status, Request
|
|
from fastapi.responses import JSONResponse, RedirectResponse
|
|
|
|
from pydantic import BaseModel
|
|
from typing import Optional
|
|
import logging
|
|
|
|
|
|
from open_webui.utils.task import (
|
|
title_generation_template,
|
|
query_generation_template,
|
|
autocomplete_generation_template,
|
|
tags_generation_template,
|
|
emoji_generation_template,
|
|
moa_response_generation_template,
|
|
)
|
|
from open_webui.utils.auth import get_admin_user, get_verified_user
|
|
from open_webui.constants import TASKS
|
|
|
|
from open_webui.routers.pipelines import process_pipeline_inlet_filter
|
|
from open_webui.utils.task import get_task_model_id
|
|
|
|
from open_webui.config import (
|
|
DEFAULT_QUERY_GENERATION_PROMPT_TEMPLATE,
|
|
DEFAULT_AUTOCOMPLETE_GENERATION_PROMPT_TEMPLATE,
|
|
)
|
|
from open_webui.env import SRC_LOG_LEVELS
|
|
|
|
|
|
log = logging.getLogger(__name__)
|
|
log.setLevel(SRC_LOG_LEVELS["MODELS"])
|
|
|
|
router = APIRouter()
|
|
|
|
|
|
##################################
|
|
#
|
|
# Task Endpoints
|
|
#
|
|
##################################
|
|
|
|
|
|
@router.get("/config")
|
|
async def get_task_config(request: Request, user=Depends(get_verified_user)):
|
|
return {
|
|
"TASK_MODEL": request.app.state.config.TASK_MODEL,
|
|
"TASK_MODEL_EXTERNAL": request.app.state.config.TASK_MODEL_EXTERNAL,
|
|
"TITLE_GENERATION_PROMPT_TEMPLATE": request.app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE,
|
|
"ENABLE_AUTOCOMPLETE_GENERATION": request.app.state.config.ENABLE_AUTOCOMPLETE_GENERATION,
|
|
"AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH": request.app.state.config.AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH,
|
|
"TAGS_GENERATION_PROMPT_TEMPLATE": request.app.state.config.TAGS_GENERATION_PROMPT_TEMPLATE,
|
|
"ENABLE_TAGS_GENERATION": request.app.state.config.ENABLE_TAGS_GENERATION,
|
|
"ENABLE_SEARCH_QUERY_GENERATION": request.app.state.config.ENABLE_SEARCH_QUERY_GENERATION,
|
|
"ENABLE_RETRIEVAL_QUERY_GENERATION": request.app.state.config.ENABLE_RETRIEVAL_QUERY_GENERATION,
|
|
"QUERY_GENERATION_PROMPT_TEMPLATE": request.app.state.config.QUERY_GENERATION_PROMPT_TEMPLATE,
|
|
"TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE": request.app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE,
|
|
}
|
|
|
|
|
|
class TaskConfigForm(BaseModel):
|
|
TASK_MODEL: Optional[str]
|
|
TASK_MODEL_EXTERNAL: Optional[str]
|
|
TITLE_GENERATION_PROMPT_TEMPLATE: str
|
|
ENABLE_AUTOCOMPLETE_GENERATION: bool
|
|
AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH: int
|
|
TAGS_GENERATION_PROMPT_TEMPLATE: str
|
|
ENABLE_TAGS_GENERATION: bool
|
|
ENABLE_SEARCH_QUERY_GENERATION: bool
|
|
ENABLE_RETRIEVAL_QUERY_GENERATION: bool
|
|
QUERY_GENERATION_PROMPT_TEMPLATE: str
|
|
TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE: str
|
|
|
|
|
|
@router.post("/config/update")
|
|
async def update_task_config(
|
|
request: Request, form_data: TaskConfigForm, user=Depends(get_admin_user)
|
|
):
|
|
request.app.state.config.TASK_MODEL = form_data.TASK_MODEL
|
|
request.app.state.config.TASK_MODEL_EXTERNAL = form_data.TASK_MODEL_EXTERNAL
|
|
request.app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE = (
|
|
form_data.TITLE_GENERATION_PROMPT_TEMPLATE
|
|
)
|
|
|
|
request.app.state.config.ENABLE_AUTOCOMPLETE_GENERATION = (
|
|
form_data.ENABLE_AUTOCOMPLETE_GENERATION
|
|
)
|
|
request.app.state.config.AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH = (
|
|
form_data.AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH
|
|
)
|
|
|
|
request.app.state.config.TAGS_GENERATION_PROMPT_TEMPLATE = (
|
|
form_data.TAGS_GENERATION_PROMPT_TEMPLATE
|
|
)
|
|
request.app.state.config.ENABLE_TAGS_GENERATION = form_data.ENABLE_TAGS_GENERATION
|
|
request.app.state.config.ENABLE_SEARCH_QUERY_GENERATION = (
|
|
form_data.ENABLE_SEARCH_QUERY_GENERATION
|
|
)
|
|
request.app.state.config.ENABLE_RETRIEVAL_QUERY_GENERATION = (
|
|
form_data.ENABLE_RETRIEVAL_QUERY_GENERATION
|
|
)
|
|
|
|
request.app.state.config.QUERY_GENERATION_PROMPT_TEMPLATE = (
|
|
form_data.QUERY_GENERATION_PROMPT_TEMPLATE
|
|
)
|
|
request.app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE = (
|
|
form_data.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE
|
|
)
|
|
|
|
return {
|
|
"TASK_MODEL": request.app.state.config.TASK_MODEL,
|
|
"TASK_MODEL_EXTERNAL": request.app.state.config.TASK_MODEL_EXTERNAL,
|
|
"TITLE_GENERATION_PROMPT_TEMPLATE": request.app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE,
|
|
"ENABLE_AUTOCOMPLETE_GENERATION": request.app.state.config.ENABLE_AUTOCOMPLETE_GENERATION,
|
|
"AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH": request.app.state.config.AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH,
|
|
"TAGS_GENERATION_PROMPT_TEMPLATE": request.app.state.config.TAGS_GENERATION_PROMPT_TEMPLATE,
|
|
"ENABLE_TAGS_GENERATION": request.app.state.config.ENABLE_TAGS_GENERATION,
|
|
"ENABLE_SEARCH_QUERY_GENERATION": request.app.state.config.ENABLE_SEARCH_QUERY_GENERATION,
|
|
"ENABLE_RETRIEVAL_QUERY_GENERATION": request.app.state.config.ENABLE_RETRIEVAL_QUERY_GENERATION,
|
|
"QUERY_GENERATION_PROMPT_TEMPLATE": request.app.state.config.QUERY_GENERATION_PROMPT_TEMPLATE,
|
|
"TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE": request.app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE,
|
|
}
|
|
|
|
|
|
@router.post("/title/completions")
|
|
async def generate_title(
|
|
request: Request, form_data: dict, user=Depends(get_verified_user)
|
|
):
|
|
models = request.app.state.MODELS
|
|
|
|
model_id = form_data["model"]
|
|
if model_id not in models:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_404_NOT_FOUND,
|
|
detail="Model not found",
|
|
)
|
|
|
|
# Check if the user has a custom task model
|
|
# If the user has a custom task model, use that model
|
|
task_model_id = get_task_model_id(
|
|
model_id,
|
|
request.app.state.config.TASK_MODEL,
|
|
request.app.state.config.TASK_MODEL_EXTERNAL,
|
|
models,
|
|
)
|
|
|
|
log.debug(
|
|
f"generating chat title using model {task_model_id} for user {user.email} "
|
|
)
|
|
|
|
if request.app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE != "":
|
|
template = request.app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE
|
|
else:
|
|
template = """Create a concise, 3-5 word title with an emoji as a title for the chat history, in the given language. Suitable Emojis for the summary can be used to enhance understanding but avoid quotation marks or special formatting. RESPOND ONLY WITH THE TITLE TEXT.
|
|
|
|
Examples of titles:
|
|
📉 Stock Market Trends
|
|
🍪 Perfect Chocolate Chip Recipe
|
|
Evolution of Music Streaming
|
|
Remote Work Productivity Tips
|
|
Artificial Intelligence in Healthcare
|
|
🎮 Video Game Development Insights
|
|
|
|
<chat_history>
|
|
{{MESSAGES:END:2}}
|
|
</chat_history>"""
|
|
|
|
content = title_generation_template(
|
|
template,
|
|
form_data["messages"],
|
|
{
|
|
"name": user.name,
|
|
"location": user.info.get("location") if user.info else None,
|
|
},
|
|
)
|
|
|
|
payload = {
|
|
"model": task_model_id,
|
|
"messages": [{"role": "user", "content": content}],
|
|
"stream": False,
|
|
**(
|
|
{"max_tokens": 50}
|
|
if models[task_model_id]["owned_by"] == "ollama"
|
|
else {
|
|
"max_completion_tokens": 50,
|
|
}
|
|
),
|
|
"metadata": {
|
|
"task": str(TASKS.TITLE_GENERATION),
|
|
"task_body": form_data,
|
|
"chat_id": form_data.get("chat_id", None),
|
|
},
|
|
}
|
|
|
|
# Handle pipeline filters
|
|
try:
|
|
payload = process_pipeline_inlet_filter(payload, user, models)
|
|
except Exception as e:
|
|
if len(e.args) > 1:
|
|
return JSONResponse(
|
|
status_code=e.args[0],
|
|
content={"detail": e.args[1]},
|
|
)
|
|
else:
|
|
return JSONResponse(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
content={"detail": str(e)},
|
|
)
|
|
if "chat_id" in payload:
|
|
del payload["chat_id"]
|
|
|
|
return await generate_chat_completions(form_data=payload, user=user)
|
|
|
|
|
|
@router.post("/tags/completions")
|
|
async def generate_chat_tags(
|
|
request: Request, form_data: dict, user=Depends(get_verified_user)
|
|
):
|
|
|
|
if not request.app.state.config.ENABLE_TAGS_GENERATION:
|
|
return JSONResponse(
|
|
status_code=status.HTTP_200_OK,
|
|
content={"detail": "Tags generation is disabled"},
|
|
)
|
|
|
|
models = request.app.state.MODELS
|
|
|
|
model_id = form_data["model"]
|
|
if model_id not in models:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_404_NOT_FOUND,
|
|
detail="Model not found",
|
|
)
|
|
|
|
# Check if the user has a custom task model
|
|
# If the user has a custom task model, use that model
|
|
task_model_id = get_task_model_id(
|
|
model_id,
|
|
request.app.state.config.TASK_MODEL,
|
|
request.app.state.config.TASK_MODEL_EXTERNAL,
|
|
models,
|
|
)
|
|
|
|
log.debug(
|
|
f"generating chat tags using model {task_model_id} for user {user.email} "
|
|
)
|
|
|
|
if request.app.state.config.TAGS_GENERATION_PROMPT_TEMPLATE != "":
|
|
template = request.app.state.config.TAGS_GENERATION_PROMPT_TEMPLATE
|
|
else:
|
|
template = """### Task:
|
|
Generate 1-3 broad tags categorizing the main themes of the chat history, along with 1-3 more specific subtopic tags.
|
|
|
|
### Guidelines:
|
|
- Start with high-level domains (e.g. Science, Technology, Philosophy, Arts, Politics, Business, Health, Sports, Entertainment, Education)
|
|
- Consider including relevant subfields/subdomains if they are strongly represented throughout the conversation
|
|
- If content is too short (less than 3 messages) or too diverse, use only ["General"]
|
|
- Use the chat's primary language; default to English if multilingual
|
|
- Prioritize accuracy over specificity
|
|
|
|
### Output:
|
|
JSON format: { "tags": ["tag1", "tag2", "tag3"] }
|
|
|
|
### Chat History:
|
|
<chat_history>
|
|
{{MESSAGES:END:6}}
|
|
</chat_history>"""
|
|
|
|
content = tags_generation_template(
|
|
template, form_data["messages"], {"name": user.name}
|
|
)
|
|
|
|
payload = {
|
|
"model": task_model_id,
|
|
"messages": [{"role": "user", "content": content}],
|
|
"stream": False,
|
|
"metadata": {
|
|
"task": str(TASKS.TAGS_GENERATION),
|
|
"task_body": form_data,
|
|
"chat_id": form_data.get("chat_id", None),
|
|
},
|
|
}
|
|
|
|
# Handle pipeline filters
|
|
try:
|
|
payload = process_pipeline_inlet_filter(payload, user, models)
|
|
except Exception as e:
|
|
if len(e.args) > 1:
|
|
return JSONResponse(
|
|
status_code=e.args[0],
|
|
content={"detail": e.args[1]},
|
|
)
|
|
else:
|
|
return JSONResponse(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
content={"detail": str(e)},
|
|
)
|
|
if "chat_id" in payload:
|
|
del payload["chat_id"]
|
|
|
|
return await generate_chat_completions(form_data=payload, user=user)
|
|
|
|
|
|
@router.post("/queries/completions")
|
|
async def generate_queries(
|
|
request: Request, form_data: dict, user=Depends(get_verified_user)
|
|
):
|
|
|
|
type = form_data.get("type")
|
|
if type == "web_search":
|
|
if not request.app.state.config.ENABLE_SEARCH_QUERY_GENERATION:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
detail=f"Search query generation is disabled",
|
|
)
|
|
elif type == "retrieval":
|
|
if not request.app.state.config.ENABLE_RETRIEVAL_QUERY_GENERATION:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
detail=f"Query generation is disabled",
|
|
)
|
|
|
|
models = request.app.state.MODELS
|
|
|
|
model_id = form_data["model"]
|
|
if model_id not in models:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_404_NOT_FOUND,
|
|
detail="Model not found",
|
|
)
|
|
|
|
# Check if the user has a custom task model
|
|
# If the user has a custom task model, use that model
|
|
task_model_id = get_task_model_id(
|
|
model_id,
|
|
request.app.state.config.TASK_MODEL,
|
|
request.app.state.config.TASK_MODEL_EXTERNAL,
|
|
models,
|
|
)
|
|
|
|
log.debug(
|
|
f"generating {type} queries using model {task_model_id} for user {user.email}"
|
|
)
|
|
|
|
if (request.app.state.config.QUERY_GENERATION_PROMPT_TEMPLATE).strip() != "":
|
|
template = request.app.state.config.QUERY_GENERATION_PROMPT_TEMPLATE
|
|
else:
|
|
template = DEFAULT_QUERY_GENERATION_PROMPT_TEMPLATE
|
|
|
|
content = query_generation_template(
|
|
template, form_data["messages"], {"name": user.name}
|
|
)
|
|
|
|
payload = {
|
|
"model": task_model_id,
|
|
"messages": [{"role": "user", "content": content}],
|
|
"stream": False,
|
|
"metadata": {
|
|
"task": str(TASKS.QUERY_GENERATION),
|
|
"task_body": form_data,
|
|
"chat_id": form_data.get("chat_id", None),
|
|
},
|
|
}
|
|
|
|
# Handle pipeline filters
|
|
try:
|
|
payload = process_pipeline_inlet_filter(payload, user, models)
|
|
except Exception as e:
|
|
if len(e.args) > 1:
|
|
return JSONResponse(
|
|
status_code=e.args[0],
|
|
content={"detail": e.args[1]},
|
|
)
|
|
else:
|
|
return JSONResponse(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
content={"detail": str(e)},
|
|
)
|
|
if "chat_id" in payload:
|
|
del payload["chat_id"]
|
|
|
|
return await generate_chat_completions(form_data=payload, user=user)
|
|
|
|
|
|
@router.post("/auto/completions")
|
|
async def generate_autocompletion(
|
|
request: Request, form_data: dict, user=Depends(get_verified_user)
|
|
):
|
|
if not request.app.state.config.ENABLE_AUTOCOMPLETE_GENERATION:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
detail=f"Autocompletion generation is disabled",
|
|
)
|
|
|
|
type = form_data.get("type")
|
|
prompt = form_data.get("prompt")
|
|
messages = form_data.get("messages")
|
|
|
|
if request.app.state.config.AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH > 0:
|
|
if (
|
|
len(prompt)
|
|
> request.app.state.config.AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH
|
|
):
|
|
raise HTTPException(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
detail=f"Input prompt exceeds maximum length of {request.app.state.config.AUTOCOMPLETE_GENERATION_INPUT_MAX_LENGTH}",
|
|
)
|
|
|
|
models = request.app.state.MODELS
|
|
|
|
model_id = form_data["model"]
|
|
if model_id not in models:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_404_NOT_FOUND,
|
|
detail="Model not found",
|
|
)
|
|
|
|
# Check if the user has a custom task model
|
|
# If the user has a custom task model, use that model
|
|
task_model_id = get_task_model_id(
|
|
model_id,
|
|
request.app.state.config.TASK_MODEL,
|
|
request.app.state.config.TASK_MODEL_EXTERNAL,
|
|
models,
|
|
)
|
|
|
|
log.debug(
|
|
f"generating autocompletion using model {task_model_id} for user {user.email}"
|
|
)
|
|
|
|
if (request.app.state.config.AUTOCOMPLETE_GENERATION_PROMPT_TEMPLATE).strip() != "":
|
|
template = request.app.state.config.AUTOCOMPLETE_GENERATION_PROMPT_TEMPLATE
|
|
else:
|
|
template = DEFAULT_AUTOCOMPLETE_GENERATION_PROMPT_TEMPLATE
|
|
|
|
content = autocomplete_generation_template(
|
|
template, prompt, messages, type, {"name": user.name}
|
|
)
|
|
|
|
payload = {
|
|
"model": task_model_id,
|
|
"messages": [{"role": "user", "content": content}],
|
|
"stream": False,
|
|
"metadata": {
|
|
"task": str(TASKS.AUTOCOMPLETE_GENERATION),
|
|
"task_body": form_data,
|
|
"chat_id": form_data.get("chat_id", None),
|
|
},
|
|
}
|
|
|
|
# Handle pipeline filters
|
|
try:
|
|
payload = process_pipeline_inlet_filter(payload, user, models)
|
|
except Exception as e:
|
|
if len(e.args) > 1:
|
|
return JSONResponse(
|
|
status_code=e.args[0],
|
|
content={"detail": e.args[1]},
|
|
)
|
|
else:
|
|
return JSONResponse(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
content={"detail": str(e)},
|
|
)
|
|
if "chat_id" in payload:
|
|
del payload["chat_id"]
|
|
|
|
return await generate_chat_completions(form_data=payload, user=user)
|
|
|
|
|
|
@router.post("/emoji/completions")
|
|
async def generate_emoji(
|
|
request: Request, form_data: dict, user=Depends(get_verified_user)
|
|
):
|
|
|
|
models = request.app.state.MODELS
|
|
|
|
model_id = form_data["model"]
|
|
if model_id not in models:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_404_NOT_FOUND,
|
|
detail="Model not found",
|
|
)
|
|
|
|
# Check if the user has a custom task model
|
|
# If the user has a custom task model, use that model
|
|
task_model_id = get_task_model_id(
|
|
model_id,
|
|
request.app.state.config.TASK_MODEL,
|
|
request.app.state.config.TASK_MODEL_EXTERNAL,
|
|
models,
|
|
)
|
|
|
|
log.debug(f"generating emoji using model {task_model_id} for user {user.email} ")
|
|
|
|
template = '''
|
|
Your task is to reflect the speaker's likely facial expression through a fitting emoji. Interpret emotions from the message and reflect their facial expression using fitting, diverse emojis (e.g., 😊, 😢, 😡, 😱).
|
|
|
|
Message: """{{prompt}}"""
|
|
'''
|
|
content = emoji_generation_template(
|
|
template,
|
|
form_data["prompt"],
|
|
{
|
|
"name": user.name,
|
|
"location": user.info.get("location") if user.info else None,
|
|
},
|
|
)
|
|
|
|
payload = {
|
|
"model": task_model_id,
|
|
"messages": [{"role": "user", "content": content}],
|
|
"stream": False,
|
|
**(
|
|
{"max_tokens": 4}
|
|
if models[task_model_id]["owned_by"] == "ollama"
|
|
else {
|
|
"max_completion_tokens": 4,
|
|
}
|
|
),
|
|
"chat_id": form_data.get("chat_id", None),
|
|
"metadata": {"task": str(TASKS.EMOJI_GENERATION), "task_body": form_data},
|
|
}
|
|
|
|
# Handle pipeline filters
|
|
try:
|
|
payload = process_pipeline_inlet_filter(payload, user, models)
|
|
except Exception as e:
|
|
if len(e.args) > 1:
|
|
return JSONResponse(
|
|
status_code=e.args[0],
|
|
content={"detail": e.args[1]},
|
|
)
|
|
else:
|
|
return JSONResponse(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
content={"detail": str(e)},
|
|
)
|
|
if "chat_id" in payload:
|
|
del payload["chat_id"]
|
|
|
|
return await generate_chat_completions(form_data=payload, user=user)
|
|
|
|
|
|
@router.post("/moa/completions")
|
|
async def generate_moa_response(
|
|
request: Request, form_data: dict, user=Depends(get_verified_user)
|
|
):
|
|
|
|
models = request.app.state.MODELS
|
|
model_id = form_data["model"]
|
|
|
|
if model_id not in models:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_404_NOT_FOUND,
|
|
detail="Model not found",
|
|
)
|
|
|
|
# Check if the user has a custom task model
|
|
# If the user has a custom task model, use that model
|
|
task_model_id = get_task_model_id(
|
|
model_id,
|
|
request.app.state.config.TASK_MODEL,
|
|
request.app.state.config.TASK_MODEL_EXTERNAL,
|
|
models,
|
|
)
|
|
|
|
log.debug(f"generating MOA model {task_model_id} for user {user.email} ")
|
|
|
|
template = """You have been provided with a set of responses from various models to the latest user query: "{{prompt}}"
|
|
|
|
Your task is to synthesize these responses into a single, high-quality response. It is crucial to critically evaluate the information provided in these responses, recognizing that some of it may be biased or incorrect. Your response should not simply replicate the given answers but should offer a refined, accurate, and comprehensive reply to the instruction. Ensure your response is well-structured, coherent, and adheres to the highest standards of accuracy and reliability.
|
|
|
|
Responses from models: {{responses}}"""
|
|
|
|
content = moa_response_generation_template(
|
|
template,
|
|
form_data["prompt"],
|
|
form_data["responses"],
|
|
)
|
|
|
|
payload = {
|
|
"model": task_model_id,
|
|
"messages": [{"role": "user", "content": content}],
|
|
"stream": form_data.get("stream", False),
|
|
"chat_id": form_data.get("chat_id", None),
|
|
"metadata": {
|
|
"task": str(TASKS.MOA_RESPONSE_GENERATION),
|
|
"task_body": form_data,
|
|
},
|
|
}
|
|
|
|
try:
|
|
payload = process_pipeline_inlet_filter(payload, user, models)
|
|
except Exception as e:
|
|
if len(e.args) > 1:
|
|
return JSONResponse(
|
|
status_code=e.args[0],
|
|
content={"detail": e.args[1]},
|
|
)
|
|
else:
|
|
return JSONResponse(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
content={"detail": str(e)},
|
|
)
|
|
if "chat_id" in payload:
|
|
del payload["chat_id"]
|
|
|
|
return await generate_chat_completions(form_data=payload, user=user)
|