mirror of
https://github.com/open-webui/open-webui
synced 2025-01-21 18:26:41 +00:00
714 lines
24 KiB
Python
714 lines
24 KiB
Python
import hashlib
|
|
import json
|
|
import logging
|
|
import os
|
|
import uuid
|
|
from functools import lru_cache
|
|
from pathlib import Path
|
|
from pydub import AudioSegment
|
|
from pydub.silence import split_on_silence
|
|
|
|
import aiohttp
|
|
import aiofiles
|
|
import requests
|
|
|
|
from fastapi import (
|
|
Depends,
|
|
FastAPI,
|
|
File,
|
|
HTTPException,
|
|
Request,
|
|
UploadFile,
|
|
status,
|
|
APIRouter,
|
|
)
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
from fastapi.responses import FileResponse
|
|
from pydantic import BaseModel
|
|
|
|
|
|
from open_webui.utils.auth import get_admin_user, get_verified_user
|
|
from open_webui.config import (
|
|
WHISPER_MODEL_AUTO_UPDATE,
|
|
WHISPER_MODEL_DIR,
|
|
CACHE_DIR,
|
|
)
|
|
|
|
from open_webui.constants import ERROR_MESSAGES
|
|
from open_webui.env import (
|
|
ENV,
|
|
SRC_LOG_LEVELS,
|
|
DEVICE_TYPE,
|
|
ENABLE_FORWARD_USER_INFO_HEADERS,
|
|
)
|
|
|
|
|
|
router = APIRouter()
|
|
|
|
# Constants
|
|
MAX_FILE_SIZE_MB = 25
|
|
MAX_FILE_SIZE = MAX_FILE_SIZE_MB * 1024 * 1024 # Convert MB to bytes
|
|
|
|
log = logging.getLogger(__name__)
|
|
log.setLevel(SRC_LOG_LEVELS["AUDIO"])
|
|
|
|
SPEECH_CACHE_DIR = Path(CACHE_DIR).joinpath("./audio/speech/")
|
|
SPEECH_CACHE_DIR.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
##########################################
|
|
#
|
|
# Utility functions
|
|
#
|
|
##########################################
|
|
|
|
from pydub import AudioSegment
|
|
from pydub.utils import mediainfo
|
|
|
|
|
|
def is_mp4_audio(file_path):
|
|
"""Check if the given file is an MP4 audio file."""
|
|
if not os.path.isfile(file_path):
|
|
print(f"File not found: {file_path}")
|
|
return False
|
|
|
|
info = mediainfo(file_path)
|
|
if (
|
|
info.get("codec_name") == "aac"
|
|
and info.get("codec_type") == "audio"
|
|
and info.get("codec_tag_string") == "mp4a"
|
|
):
|
|
return True
|
|
return False
|
|
|
|
|
|
def convert_mp4_to_wav(file_path, output_path):
|
|
"""Convert MP4 audio file to WAV format."""
|
|
audio = AudioSegment.from_file(file_path, format="mp4")
|
|
audio.export(output_path, format="wav")
|
|
print(f"Converted {file_path} to {output_path}")
|
|
|
|
|
|
def set_faster_whisper_model(model: str, auto_update: bool = False):
|
|
whisper_model = None
|
|
if model:
|
|
from faster_whisper import WhisperModel
|
|
|
|
faster_whisper_kwargs = {
|
|
"model_size_or_path": model,
|
|
"device": DEVICE_TYPE if DEVICE_TYPE and DEVICE_TYPE == "cuda" else "cpu",
|
|
"compute_type": "int8",
|
|
"download_root": WHISPER_MODEL_DIR,
|
|
"local_files_only": not auto_update,
|
|
}
|
|
|
|
try:
|
|
whisper_model = WhisperModel(**faster_whisper_kwargs)
|
|
except Exception:
|
|
log.warning(
|
|
"WhisperModel initialization failed, attempting download with local_files_only=False"
|
|
)
|
|
faster_whisper_kwargs["local_files_only"] = False
|
|
whisper_model = WhisperModel(**faster_whisper_kwargs)
|
|
return whisper_model
|
|
|
|
|
|
##########################################
|
|
#
|
|
# Audio API
|
|
#
|
|
##########################################
|
|
|
|
|
|
class TTSConfigForm(BaseModel):
|
|
OPENAI_API_BASE_URL: str
|
|
OPENAI_API_KEY: str
|
|
API_KEY: str
|
|
ENGINE: str
|
|
MODEL: str
|
|
VOICE: str
|
|
SPLIT_ON: str
|
|
AZURE_SPEECH_REGION: str
|
|
AZURE_SPEECH_OUTPUT_FORMAT: str
|
|
|
|
|
|
class STTConfigForm(BaseModel):
|
|
OPENAI_API_BASE_URL: str
|
|
OPENAI_API_KEY: str
|
|
ENGINE: str
|
|
MODEL: str
|
|
WHISPER_MODEL: str
|
|
|
|
|
|
class AudioConfigUpdateForm(BaseModel):
|
|
tts: TTSConfigForm
|
|
stt: STTConfigForm
|
|
|
|
|
|
@router.get("/config")
|
|
async def get_audio_config(request: Request, user=Depends(get_admin_user)):
|
|
return {
|
|
"tts": {
|
|
"OPENAI_API_BASE_URL": request.app.state.config.TTS_OPENAI_API_BASE_URL,
|
|
"OPENAI_API_KEY": request.app.state.config.TTS_OPENAI_API_KEY,
|
|
"API_KEY": request.app.state.config.TTS_API_KEY,
|
|
"ENGINE": request.app.state.config.TTS_ENGINE,
|
|
"MODEL": request.app.state.config.TTS_MODEL,
|
|
"VOICE": request.app.state.config.TTS_VOICE,
|
|
"SPLIT_ON": request.app.state.config.TTS_SPLIT_ON,
|
|
"AZURE_SPEECH_REGION": request.app.state.config.TTS_AZURE_SPEECH_REGION,
|
|
"AZURE_SPEECH_OUTPUT_FORMAT": request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT,
|
|
},
|
|
"stt": {
|
|
"OPENAI_API_BASE_URL": request.app.state.config.STT_OPENAI_API_BASE_URL,
|
|
"OPENAI_API_KEY": request.app.state.config.STT_OPENAI_API_KEY,
|
|
"ENGINE": request.app.state.config.STT_ENGINE,
|
|
"MODEL": request.app.state.config.STT_MODEL,
|
|
"WHISPER_MODEL": request.app.state.config.WHISPER_MODEL,
|
|
},
|
|
}
|
|
|
|
|
|
@router.post("/config/update")
|
|
async def update_audio_config(
|
|
request: Request, form_data: AudioConfigUpdateForm, user=Depends(get_admin_user)
|
|
):
|
|
request.app.state.config.TTS_OPENAI_API_BASE_URL = form_data.tts.OPENAI_API_BASE_URL
|
|
request.app.state.config.TTS_OPENAI_API_KEY = form_data.tts.OPENAI_API_KEY
|
|
request.app.state.config.TTS_API_KEY = form_data.tts.API_KEY
|
|
request.app.state.config.TTS_ENGINE = form_data.tts.ENGINE
|
|
request.app.state.config.TTS_MODEL = form_data.tts.MODEL
|
|
request.app.state.config.TTS_VOICE = form_data.tts.VOICE
|
|
request.app.state.config.TTS_SPLIT_ON = form_data.tts.SPLIT_ON
|
|
request.app.state.config.TTS_AZURE_SPEECH_REGION = form_data.tts.AZURE_SPEECH_REGION
|
|
request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT = (
|
|
form_data.tts.AZURE_SPEECH_OUTPUT_FORMAT
|
|
)
|
|
|
|
request.app.state.config.STT_OPENAI_API_BASE_URL = form_data.stt.OPENAI_API_BASE_URL
|
|
request.app.state.config.STT_OPENAI_API_KEY = form_data.stt.OPENAI_API_KEY
|
|
request.app.state.config.STT_ENGINE = form_data.stt.ENGINE
|
|
request.app.state.config.STT_MODEL = form_data.stt.MODEL
|
|
request.app.state.config.WHISPER_MODEL = form_data.stt.WHISPER_MODEL
|
|
|
|
if request.app.state.config.STT_ENGINE == "":
|
|
request.app.state.faster_whisper_model = set_faster_whisper_model(
|
|
form_data.stt.WHISPER_MODEL, WHISPER_MODEL_AUTO_UPDATE
|
|
)
|
|
|
|
return {
|
|
"tts": {
|
|
"OPENAI_API_BASE_URL": request.app.state.config.TTS_OPENAI_API_BASE_URL,
|
|
"OPENAI_API_KEY": request.app.state.config.TTS_OPENAI_API_KEY,
|
|
"API_KEY": request.app.state.config.TTS_API_KEY,
|
|
"ENGINE": request.app.state.config.TTS_ENGINE,
|
|
"MODEL": request.app.state.config.TTS_MODEL,
|
|
"VOICE": request.app.state.config.TTS_VOICE,
|
|
"SPLIT_ON": request.app.state.config.TTS_SPLIT_ON,
|
|
"AZURE_SPEECH_REGION": request.app.state.config.TTS_AZURE_SPEECH_REGION,
|
|
"AZURE_SPEECH_OUTPUT_FORMAT": request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT,
|
|
},
|
|
"stt": {
|
|
"OPENAI_API_BASE_URL": request.app.state.config.STT_OPENAI_API_BASE_URL,
|
|
"OPENAI_API_KEY": request.app.state.config.STT_OPENAI_API_KEY,
|
|
"ENGINE": request.app.state.config.STT_ENGINE,
|
|
"MODEL": request.app.state.config.STT_MODEL,
|
|
"WHISPER_MODEL": request.app.state.config.WHISPER_MODEL,
|
|
},
|
|
}
|
|
|
|
|
|
def load_speech_pipeline(request):
|
|
from transformers import pipeline
|
|
from datasets import load_dataset
|
|
|
|
if request.app.state.speech_synthesiser is None:
|
|
request.app.state.speech_synthesiser = pipeline(
|
|
"text-to-speech", "microsoft/speecht5_tts"
|
|
)
|
|
|
|
if request.app.state.speech_speaker_embeddings_dataset is None:
|
|
request.app.state.speech_speaker_embeddings_dataset = load_dataset(
|
|
"Matthijs/cmu-arctic-xvectors", split="validation"
|
|
)
|
|
|
|
|
|
@router.post("/speech")
|
|
async def speech(request: Request, user=Depends(get_verified_user)):
|
|
body = await request.body()
|
|
name = hashlib.sha256(
|
|
body
|
|
+ str(request.app.state.config.TTS_ENGINE).encode("utf-8")
|
|
+ str(request.app.state.config.TTS_MODEL).encode("utf-8")
|
|
).hexdigest()
|
|
|
|
file_path = SPEECH_CACHE_DIR.joinpath(f"{name}.mp3")
|
|
file_body_path = SPEECH_CACHE_DIR.joinpath(f"{name}.json")
|
|
|
|
# Check if the file already exists in the cache
|
|
if file_path.is_file():
|
|
return FileResponse(file_path)
|
|
|
|
payload = None
|
|
try:
|
|
payload = json.loads(body.decode("utf-8"))
|
|
except Exception as e:
|
|
log.exception(e)
|
|
raise HTTPException(status_code=400, detail="Invalid JSON payload")
|
|
|
|
if request.app.state.config.TTS_ENGINE == "openai":
|
|
payload["model"] = request.app.state.config.TTS_MODEL
|
|
|
|
try:
|
|
# print(payload)
|
|
async with aiohttp.ClientSession() as session:
|
|
async with session.post(
|
|
url=f"{request.app.state.config.TTS_OPENAI_API_BASE_URL}/audio/speech",
|
|
json=payload,
|
|
headers={
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {request.app.state.config.TTS_OPENAI_API_KEY}",
|
|
**(
|
|
{
|
|
"X-OpenWebUI-User-Name": user.name,
|
|
"X-OpenWebUI-User-Id": user.id,
|
|
"X-OpenWebUI-User-Email": user.email,
|
|
"X-OpenWebUI-User-Role": user.role,
|
|
}
|
|
if ENABLE_FORWARD_USER_INFO_HEADERS
|
|
else {}
|
|
),
|
|
},
|
|
) as r:
|
|
r.raise_for_status()
|
|
|
|
async with aiofiles.open(file_path, "wb") as f:
|
|
await f.write(await r.read())
|
|
|
|
async with aiofiles.open(file_body_path, "w") as f:
|
|
await f.write(json.dumps(payload))
|
|
|
|
return FileResponse(file_path)
|
|
|
|
except Exception as e:
|
|
log.exception(e)
|
|
detail = None
|
|
|
|
try:
|
|
if r.status != 200:
|
|
res = await r.json()
|
|
|
|
if "error" in res:
|
|
detail = f"External: {res['error'].get('message', '')}"
|
|
except Exception:
|
|
detail = f"External: {e}"
|
|
|
|
raise HTTPException(
|
|
status_code=getattr(r, "status", 500),
|
|
detail=detail if detail else "Open WebUI: Server Connection Error",
|
|
)
|
|
|
|
elif request.app.state.config.TTS_ENGINE == "elevenlabs":
|
|
voice_id = payload.get("voice", "")
|
|
|
|
if voice_id not in get_available_voices(request):
|
|
raise HTTPException(
|
|
status_code=400,
|
|
detail="Invalid voice id",
|
|
)
|
|
|
|
try:
|
|
async with aiohttp.ClientSession() as session:
|
|
async with session.post(
|
|
f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}",
|
|
json={
|
|
"text": payload["input"],
|
|
"model_id": request.app.state.config.TTS_MODEL,
|
|
"voice_settings": {"stability": 0.5, "similarity_boost": 0.5},
|
|
},
|
|
headers={
|
|
"Accept": "audio/mpeg",
|
|
"Content-Type": "application/json",
|
|
"xi-api-key": request.app.state.config.TTS_API_KEY,
|
|
},
|
|
) as r:
|
|
r.raise_for_status()
|
|
|
|
async with aiofiles.open(file_path, "wb") as f:
|
|
await f.write(await r.read())
|
|
|
|
async with aiofiles.open(file_body_path, "w") as f:
|
|
await f.write(json.dumps(payload))
|
|
|
|
return FileResponse(file_path)
|
|
|
|
except Exception as e:
|
|
log.exception(e)
|
|
detail = None
|
|
|
|
try:
|
|
if r.status != 200:
|
|
res = await r.json()
|
|
if "error" in res:
|
|
detail = f"External: {res['error'].get('message', '')}"
|
|
except Exception:
|
|
detail = f"External: {e}"
|
|
|
|
raise HTTPException(
|
|
status_code=getattr(r, "status", 500),
|
|
detail=detail if detail else "Open WebUI: Server Connection Error",
|
|
)
|
|
|
|
elif request.app.state.config.TTS_ENGINE == "azure":
|
|
try:
|
|
payload = json.loads(body.decode("utf-8"))
|
|
except Exception as e:
|
|
log.exception(e)
|
|
raise HTTPException(status_code=400, detail="Invalid JSON payload")
|
|
|
|
region = request.app.state.config.TTS_AZURE_SPEECH_REGION
|
|
language = request.app.state.config.TTS_VOICE
|
|
locale = "-".join(request.app.state.config.TTS_VOICE.split("-")[:1])
|
|
output_format = request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT
|
|
|
|
try:
|
|
data = f"""<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis" xml:lang="{locale}">
|
|
<voice name="{language}">{payload["input"]}</voice>
|
|
</speak>"""
|
|
async with aiohttp.ClientSession() as session:
|
|
async with session.post(
|
|
f"https://{region}.tts.speech.microsoft.com/cognitiveservices/v1",
|
|
headers={
|
|
"Ocp-Apim-Subscription-Key": request.app.state.config.TTS_API_KEY,
|
|
"Content-Type": "application/ssml+xml",
|
|
"X-Microsoft-OutputFormat": output_format,
|
|
},
|
|
data=data,
|
|
) as r:
|
|
r.raise_for_status()
|
|
|
|
async with aiofiles.open(file_path, "wb") as f:
|
|
await f.write(await r.read())
|
|
|
|
async with aiofiles.open(file_body_path, "w") as f:
|
|
await f.write(json.dumps(payload))
|
|
|
|
return FileResponse(file_path)
|
|
|
|
except Exception as e:
|
|
log.exception(e)
|
|
detail = None
|
|
|
|
try:
|
|
if r.status != 200:
|
|
res = await r.json()
|
|
if "error" in res:
|
|
detail = f"External: {res['error'].get('message', '')}"
|
|
except Exception:
|
|
detail = f"External: {e}"
|
|
|
|
raise HTTPException(
|
|
status_code=getattr(r, "status", 500),
|
|
detail=detail if detail else "Open WebUI: Server Connection Error",
|
|
)
|
|
|
|
elif request.app.state.config.TTS_ENGINE == "transformers":
|
|
payload = None
|
|
try:
|
|
payload = json.loads(body.decode("utf-8"))
|
|
except Exception as e:
|
|
log.exception(e)
|
|
raise HTTPException(status_code=400, detail="Invalid JSON payload")
|
|
|
|
import torch
|
|
import soundfile as sf
|
|
|
|
load_speech_pipeline(request)
|
|
|
|
embeddings_dataset = request.app.state.speech_speaker_embeddings_dataset
|
|
|
|
speaker_index = 6799
|
|
try:
|
|
speaker_index = embeddings_dataset["filename"].index(
|
|
request.app.state.config.TTS_MODEL
|
|
)
|
|
except Exception:
|
|
pass
|
|
|
|
speaker_embedding = torch.tensor(
|
|
embeddings_dataset[speaker_index]["xvector"]
|
|
).unsqueeze(0)
|
|
|
|
speech = request.app.state.speech_synthesiser(
|
|
payload["input"],
|
|
forward_params={"speaker_embeddings": speaker_embedding},
|
|
)
|
|
|
|
sf.write(file_path, speech["audio"], samplerate=speech["sampling_rate"])
|
|
|
|
async with aiofiles.open(file_body_path, "w") as f:
|
|
await f.write(json.dumps(payload))
|
|
|
|
return FileResponse(file_path)
|
|
|
|
|
|
def transcribe(request: Request, file_path):
|
|
print("transcribe", file_path)
|
|
filename = os.path.basename(file_path)
|
|
file_dir = os.path.dirname(file_path)
|
|
id = filename.split(".")[0]
|
|
|
|
if request.app.state.config.STT_ENGINE == "":
|
|
if request.app.state.faster_whisper_model is None:
|
|
request.app.state.faster_whisper_model = set_faster_whisper_model(
|
|
request.app.state.config.WHISPER_MODEL
|
|
)
|
|
|
|
model = request.app.state.faster_whisper_model
|
|
segments, info = model.transcribe(file_path, beam_size=5)
|
|
log.info(
|
|
"Detected language '%s' with probability %f"
|
|
% (info.language, info.language_probability)
|
|
)
|
|
|
|
transcript = "".join([segment.text for segment in list(segments)])
|
|
data = {"text": transcript.strip()}
|
|
|
|
# save the transcript to a json file
|
|
transcript_file = f"{file_dir}/{id}.json"
|
|
with open(transcript_file, "w") as f:
|
|
json.dump(data, f)
|
|
|
|
log.debug(data)
|
|
return data
|
|
elif request.app.state.config.STT_ENGINE == "openai":
|
|
if is_mp4_audio(file_path):
|
|
os.rename(file_path, file_path.replace(".wav", ".mp4"))
|
|
# Convert MP4 audio file to WAV format
|
|
convert_mp4_to_wav(file_path.replace(".wav", ".mp4"), file_path)
|
|
|
|
r = None
|
|
try:
|
|
r = requests.post(
|
|
url=f"{request.app.state.config.STT_OPENAI_API_BASE_URL}/audio/transcriptions",
|
|
headers={
|
|
"Authorization": f"Bearer {request.app.state.config.STT_OPENAI_API_KEY}"
|
|
},
|
|
files={"file": (filename, open(file_path, "rb"))},
|
|
data={"model": request.app.state.config.STT_MODEL},
|
|
)
|
|
|
|
r.raise_for_status()
|
|
data = r.json()
|
|
|
|
# save the transcript to a json file
|
|
transcript_file = f"{file_dir}/{id}.json"
|
|
with open(transcript_file, "w") as f:
|
|
json.dump(data, f)
|
|
|
|
return data
|
|
except Exception as e:
|
|
log.exception(e)
|
|
|
|
detail = None
|
|
if r is not None:
|
|
try:
|
|
res = r.json()
|
|
if "error" in res:
|
|
detail = f"External: {res['error'].get('message', '')}"
|
|
except Exception:
|
|
detail = f"External: {e}"
|
|
|
|
raise Exception(detail if detail else "Open WebUI: Server Connection Error")
|
|
|
|
|
|
def compress_audio(file_path):
|
|
if os.path.getsize(file_path) > MAX_FILE_SIZE:
|
|
file_dir = os.path.dirname(file_path)
|
|
audio = AudioSegment.from_file(file_path)
|
|
audio = audio.set_frame_rate(16000).set_channels(1) # Compress audio
|
|
compressed_path = f"{file_dir}/{id}_compressed.opus"
|
|
audio.export(compressed_path, format="opus", bitrate="32k")
|
|
log.debug(f"Compressed audio to {compressed_path}")
|
|
|
|
if (
|
|
os.path.getsize(compressed_path) > MAX_FILE_SIZE
|
|
): # Still larger than MAX_FILE_SIZE after compression
|
|
raise Exception(ERROR_MESSAGES.FILE_TOO_LARGE(size=f"{MAX_FILE_SIZE_MB}MB"))
|
|
return compressed_path
|
|
else:
|
|
return file_path
|
|
|
|
|
|
@router.post("/transcriptions")
|
|
def transcription(
|
|
request: Request,
|
|
file: UploadFile = File(...),
|
|
user=Depends(get_verified_user),
|
|
):
|
|
log.info(f"file.content_type: {file.content_type}")
|
|
|
|
if file.content_type not in ["audio/mpeg", "audio/wav", "audio/ogg", "audio/x-m4a"]:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
detail=ERROR_MESSAGES.FILE_NOT_SUPPORTED,
|
|
)
|
|
|
|
try:
|
|
ext = file.filename.split(".")[-1]
|
|
id = uuid.uuid4()
|
|
|
|
filename = f"{id}.{ext}"
|
|
contents = file.file.read()
|
|
|
|
file_dir = f"{CACHE_DIR}/audio/transcriptions"
|
|
os.makedirs(file_dir, exist_ok=True)
|
|
file_path = f"{file_dir}/{filename}"
|
|
|
|
with open(file_path, "wb") as f:
|
|
f.write(contents)
|
|
|
|
try:
|
|
try:
|
|
file_path = compress_audio(file_path)
|
|
except Exception as e:
|
|
log.exception(e)
|
|
|
|
raise HTTPException(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
detail=ERROR_MESSAGES.DEFAULT(e),
|
|
)
|
|
|
|
data = transcribe(request, file_path)
|
|
file_path = file_path.split("/")[-1]
|
|
return {**data, "filename": file_path}
|
|
except Exception as e:
|
|
log.exception(e)
|
|
|
|
raise HTTPException(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
detail=ERROR_MESSAGES.DEFAULT(e),
|
|
)
|
|
|
|
except Exception as e:
|
|
log.exception(e)
|
|
|
|
raise HTTPException(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
detail=ERROR_MESSAGES.DEFAULT(e),
|
|
)
|
|
|
|
|
|
def get_available_models(request: Request) -> list[dict]:
|
|
available_models = []
|
|
if request.app.state.config.TTS_ENGINE == "openai":
|
|
available_models = [{"id": "tts-1"}, {"id": "tts-1-hd"}]
|
|
elif request.app.state.config.TTS_ENGINE == "elevenlabs":
|
|
try:
|
|
response = requests.get(
|
|
"https://api.elevenlabs.io/v1/models",
|
|
headers={
|
|
"xi-api-key": request.app.state.config.TTS_API_KEY,
|
|
"Content-Type": "application/json",
|
|
},
|
|
timeout=5,
|
|
)
|
|
response.raise_for_status()
|
|
models = response.json()
|
|
|
|
available_models = [
|
|
{"name": model["name"], "id": model["model_id"]} for model in models
|
|
]
|
|
except requests.RequestException as e:
|
|
log.error(f"Error fetching voices: {str(e)}")
|
|
return available_models
|
|
|
|
|
|
@router.get("/models")
|
|
async def get_models(request: Request, user=Depends(get_verified_user)):
|
|
return {"models": get_available_models(request)}
|
|
|
|
|
|
def get_available_voices(request) -> dict:
|
|
"""Returns {voice_id: voice_name} dict"""
|
|
available_voices = {}
|
|
if request.app.state.config.TTS_ENGINE == "openai":
|
|
available_voices = {
|
|
"alloy": "alloy",
|
|
"echo": "echo",
|
|
"fable": "fable",
|
|
"onyx": "onyx",
|
|
"nova": "nova",
|
|
"shimmer": "shimmer",
|
|
}
|
|
elif request.app.state.config.TTS_ENGINE == "elevenlabs":
|
|
try:
|
|
available_voices = get_elevenlabs_voices(
|
|
api_key=request.app.state.config.TTS_API_KEY
|
|
)
|
|
except Exception:
|
|
# Avoided @lru_cache with exception
|
|
pass
|
|
elif request.app.state.config.TTS_ENGINE == "azure":
|
|
try:
|
|
region = request.app.state.config.TTS_AZURE_SPEECH_REGION
|
|
url = f"https://{region}.tts.speech.microsoft.com/cognitiveservices/voices/list"
|
|
headers = {
|
|
"Ocp-Apim-Subscription-Key": request.app.state.config.TTS_API_KEY
|
|
}
|
|
|
|
response = requests.get(url, headers=headers)
|
|
response.raise_for_status()
|
|
voices = response.json()
|
|
|
|
for voice in voices:
|
|
available_voices[voice["ShortName"]] = (
|
|
f"{voice['DisplayName']} ({voice['ShortName']})"
|
|
)
|
|
except requests.RequestException as e:
|
|
log.error(f"Error fetching voices: {str(e)}")
|
|
|
|
return available_voices
|
|
|
|
|
|
@lru_cache
|
|
def get_elevenlabs_voices(api_key: str) -> dict:
|
|
"""
|
|
Note, set the following in your .env file to use Elevenlabs:
|
|
AUDIO_TTS_ENGINE=elevenlabs
|
|
AUDIO_TTS_API_KEY=sk_... # Your Elevenlabs API key
|
|
AUDIO_TTS_VOICE=EXAVITQu4vr4xnSDxMaL # From https://api.elevenlabs.io/v1/voices
|
|
AUDIO_TTS_MODEL=eleven_multilingual_v2
|
|
"""
|
|
|
|
try:
|
|
# TODO: Add retries
|
|
response = requests.get(
|
|
"https://api.elevenlabs.io/v1/voices",
|
|
headers={
|
|
"xi-api-key": api_key,
|
|
"Content-Type": "application/json",
|
|
},
|
|
)
|
|
response.raise_for_status()
|
|
voices_data = response.json()
|
|
|
|
voices = {}
|
|
for voice in voices_data.get("voices", []):
|
|
voices[voice["voice_id"]] = voice["name"]
|
|
except requests.RequestException as e:
|
|
# Avoid @lru_cache with exception
|
|
log.error(f"Error fetching voices: {str(e)}")
|
|
raise RuntimeError(f"Error fetching voices: {str(e)}")
|
|
|
|
return voices
|
|
|
|
|
|
@router.get("/voices")
|
|
async def get_voices(request: Request, user=Depends(get_verified_user)):
|
|
return {
|
|
"voices": [
|
|
{"id": k, "name": v} for k, v in get_available_voices(request).items()
|
|
]
|
|
}
|