mirror of
https://github.com/open-webui/open-webui
synced 2025-01-09 20:44:30 +00:00
184 lines
5.9 KiB
Python
184 lines
5.9 KiB
Python
from open_webui.utils.task import prompt_template
|
|
from open_webui.utils.misc import (
|
|
add_or_update_system_message,
|
|
)
|
|
|
|
from typing import Callable, Optional
|
|
|
|
|
|
# inplace function: form_data is modified
|
|
def apply_model_system_prompt_to_body(params: dict, form_data: dict, user) -> dict:
|
|
system = params.get("system", None)
|
|
if not system:
|
|
return form_data
|
|
|
|
if user:
|
|
template_params = {
|
|
"user_name": user.name,
|
|
"user_location": user.info.get("location") if user.info else None,
|
|
}
|
|
else:
|
|
template_params = {}
|
|
system = prompt_template(system, **template_params)
|
|
form_data["messages"] = add_or_update_system_message(
|
|
system, form_data.get("messages", [])
|
|
)
|
|
return form_data
|
|
|
|
|
|
# inplace function: form_data is modified
|
|
def apply_model_params_to_body(
|
|
params: dict, form_data: dict, mappings: dict[str, Callable]
|
|
) -> dict:
|
|
if not params:
|
|
return form_data
|
|
|
|
for key, cast_func in mappings.items():
|
|
if (value := params.get(key)) is not None:
|
|
form_data[key] = cast_func(value)
|
|
|
|
return form_data
|
|
|
|
|
|
# inplace function: form_data is modified
|
|
def apply_model_params_to_body_openai(params: dict, form_data: dict) -> dict:
|
|
mappings = {
|
|
"temperature": float,
|
|
"top_p": float,
|
|
"max_tokens": int,
|
|
"frequency_penalty": float,
|
|
"seed": lambda x: x,
|
|
"stop": lambda x: [bytes(s, "utf-8").decode("unicode_escape") for s in x],
|
|
}
|
|
return apply_model_params_to_body(params, form_data, mappings)
|
|
|
|
|
|
def apply_model_params_to_body_ollama(params: dict, form_data: dict) -> dict:
|
|
opts = [
|
|
"temperature",
|
|
"top_p",
|
|
"seed",
|
|
"mirostat",
|
|
"mirostat_eta",
|
|
"mirostat_tau",
|
|
"num_ctx",
|
|
"num_batch",
|
|
"num_keep",
|
|
"repeat_last_n",
|
|
"tfs_z",
|
|
"top_k",
|
|
"min_p",
|
|
"use_mmap",
|
|
"use_mlock",
|
|
"num_thread",
|
|
"num_gpu",
|
|
]
|
|
mappings = {i: lambda x: x for i in opts}
|
|
form_data = apply_model_params_to_body(params, form_data, mappings)
|
|
|
|
name_differences = {
|
|
"max_tokens": "num_predict",
|
|
"frequency_penalty": "repeat_penalty",
|
|
}
|
|
|
|
for key, value in name_differences.items():
|
|
if (param := params.get(key, None)) is not None:
|
|
form_data[value] = param
|
|
|
|
return form_data
|
|
|
|
|
|
def convert_messages_openai_to_ollama(messages: list[dict]) -> list[dict]:
|
|
ollama_messages = []
|
|
|
|
for message in messages:
|
|
# Initialize the new message structure with the role
|
|
new_message = {"role": message["role"]}
|
|
|
|
content = message.get("content", [])
|
|
|
|
# Check if the content is a string (just a simple message)
|
|
if isinstance(content, str):
|
|
# If the content is a string, it's pure text
|
|
new_message["content"] = content
|
|
else:
|
|
# Otherwise, assume the content is a list of dicts, e.g., text followed by an image URL
|
|
content_text = ""
|
|
images = []
|
|
|
|
# Iterate through the list of content items
|
|
for item in content:
|
|
# Check if it's a text type
|
|
if item.get("type") == "text":
|
|
content_text += item.get("text", "")
|
|
|
|
# Check if it's an image URL type
|
|
elif item.get("type") == "image_url":
|
|
img_url = item.get("image_url", {}).get("url", "")
|
|
if img_url:
|
|
# If the image url starts with data:, it's a base64 image and should be trimmed
|
|
if img_url.startswith("data:"):
|
|
img_url = img_url.split(",")[-1]
|
|
images.append(img_url)
|
|
|
|
# Add content text (if any)
|
|
if content_text:
|
|
new_message["content"] = content_text.strip()
|
|
|
|
# Add images (if any)
|
|
if images:
|
|
new_message["images"] = images
|
|
|
|
# Append the new formatted message to the result
|
|
ollama_messages.append(new_message)
|
|
|
|
return ollama_messages
|
|
|
|
|
|
def convert_payload_openai_to_ollama(openai_payload: dict) -> dict:
|
|
"""
|
|
Converts a payload formatted for OpenAI's API to be compatible with Ollama's API endpoint for chat completions.
|
|
|
|
Args:
|
|
openai_payload (dict): The payload originally designed for OpenAI API usage.
|
|
|
|
Returns:
|
|
dict: A modified payload compatible with the Ollama API.
|
|
"""
|
|
ollama_payload = {}
|
|
|
|
# Mapping basic model and message details
|
|
ollama_payload["model"] = openai_payload.get("model")
|
|
ollama_payload["messages"] = convert_messages_openai_to_ollama(
|
|
openai_payload.get("messages")
|
|
)
|
|
ollama_payload["stream"] = openai_payload.get("stream", False)
|
|
|
|
# If there are advanced parameters in the payload, format them in Ollama's options field
|
|
ollama_options = {}
|
|
|
|
# Handle parameters which map directly
|
|
for param in ["temperature", "top_p", "seed"]:
|
|
if param in openai_payload:
|
|
ollama_options[param] = openai_payload[param]
|
|
|
|
# Mapping OpenAI's `max_tokens` -> Ollama's `num_predict`
|
|
if "max_completion_tokens" in openai_payload:
|
|
ollama_options["num_predict"] = openai_payload["max_completion_tokens"]
|
|
elif "max_tokens" in openai_payload:
|
|
ollama_options["num_predict"] = openai_payload["max_tokens"]
|
|
|
|
# Handle frequency / presence_penalty, which needs renaming and checking
|
|
if "frequency_penalty" in openai_payload:
|
|
ollama_options["repeat_penalty"] = openai_payload["frequency_penalty"]
|
|
|
|
if "presence_penalty" in openai_payload and "penalty" not in ollama_options:
|
|
# We are assuming presence penalty uses a similar concept in Ollama, which needs custom handling if exists.
|
|
ollama_options["new_topic_penalty"] = openai_payload["presence_penalty"]
|
|
|
|
# Add options to payload if any have been set
|
|
if ollama_options:
|
|
ollama_payload["options"] = ollama_options
|
|
|
|
return ollama_payload
|