open-webui/backend/open_webui/apps/rag/vector/dbs/chroma.py
2024-09-12 02:00:31 -04:00

114 lines
4.2 KiB
Python

import chromadb
from chromadb import Settings
from chromadb.utils.batch_utils import create_batches
from typing import Optional
from open_webui.apps.rag.vector.main import VectorItem, QueryResult
from open_webui.config import (
CHROMA_DATA_PATH,
CHROMA_HTTP_HOST,
CHROMA_HTTP_PORT,
CHROMA_HTTP_HEADERS,
CHROMA_HTTP_SSL,
CHROMA_TENANT,
CHROMA_DATABASE,
)
class ChromaClient:
def __init__(self):
if CHROMA_HTTP_HOST != "":
self.client = chromadb.HttpClient(
host=CHROMA_HTTP_HOST,
port=CHROMA_HTTP_PORT,
headers=CHROMA_HTTP_HEADERS,
ssl=CHROMA_HTTP_SSL,
tenant=CHROMA_TENANT,
database=CHROMA_DATABASE,
settings=Settings(allow_reset=True, anonymized_telemetry=False),
)
else:
self.client = chromadb.PersistentClient(
path=CHROMA_DATA_PATH,
settings=Settings(allow_reset=True, anonymized_telemetry=False),
tenant=CHROMA_TENANT,
database=CHROMA_DATABASE,
)
def has_collection(self, collection_name: str) -> bool:
# Check if the collection exists based on the collection name.
collections = self.client.list_collections()
return collection_name in [collection.name for collection in collections]
def delete_collection(self, collection_name: str):
# Delete the collection based on the collection name.
return self.client.delete_collection(name=collection_name)
def search(
self, collection_name: str, vectors: list[list[float | int]], limit: int
) -> Optional[QueryResult]:
# Search for the nearest neighbor items based on the vectors and return 'limit' number of results.
collection = self.client.get_collection(name=collection_name)
if collection:
result = collection.query(
query_embeddings=vectors,
n_results=limit,
)
return {
"ids": result["ids"],
"distances": result["distances"],
"documents": result["documents"],
"metadatas": result["metadatas"],
}
return None
def get(self, collection_name: str) -> Optional[QueryResult]:
# Get all the items in the collection.
collection = self.client.get_collection(name=collection_name)
if collection:
return collection.get()
return None
def insert(self, collection_name: str, items: list[VectorItem]):
# Insert the items into the collection, if the collection does not exist, it will be created.
collection = self.client.get_or_create_collection(name=collection_name)
ids = [item["id"] for item in items]
documents = [item["text"] for item in items]
embeddings = [item["vector"] for item in items]
metadatas = [item["metadata"] for item in items]
for batch in create_batches(
api=self.client,
documents=documents,
embeddings=embeddings,
ids=ids,
metadatas=metadatas,
):
collection.add(*batch)
def upsert(self, collection_name: str, items: list[VectorItem]):
# Update the items in the collection, if the items are not present, insert them. If the collection does not exist, it will be created.
collection = self.client.get_or_create_collection(name=collection_name)
ids = [item["id"] for item in items]
documents = [item["text"] for item in items]
embeddings = [item["vector"] for item in items]
metadata = [item["metadata"] for item in items]
collection.upsert(
ids=ids, documents=documents, embeddings=embeddings, metadata=metadata
)
def delete(self, collection_name: str, ids: list[str]):
# Delete the items from the collection based on the ids.
collection = self.client.get_collection(name=collection_name)
if collection:
collection.delete(ids=ids)
def reset(self):
# Resets the database. This will delete all collections and item entries.
return self.client.reset()