mirror of
https://github.com/open-webui/open-webui
synced 2025-01-19 09:16:44 +00:00
1532 lines
54 KiB
Python
1532 lines
54 KiB
Python
import json
|
|
import logging
|
|
import mimetypes
|
|
import os
|
|
import shutil
|
|
|
|
import uuid
|
|
from datetime import datetime
|
|
from pathlib import Path
|
|
from typing import Iterator, List, Optional, Sequence, Union
|
|
|
|
from fastapi import (
|
|
Depends,
|
|
FastAPI,
|
|
File,
|
|
Form,
|
|
HTTPException,
|
|
UploadFile,
|
|
Request,
|
|
status,
|
|
APIRouter,
|
|
)
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
from pydantic import BaseModel
|
|
import tiktoken
|
|
|
|
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter, TokenTextSplitter
|
|
from langchain_core.documents import Document
|
|
|
|
from open_webui.models.files import FileModel, Files
|
|
from open_webui.models.knowledge import Knowledges
|
|
from open_webui.storage.provider import Storage
|
|
|
|
|
|
from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT
|
|
|
|
# Document loaders
|
|
from open_webui.retrieval.loaders.main import Loader
|
|
from open_webui.retrieval.loaders.youtube import YoutubeLoader
|
|
|
|
# Web search engines
|
|
from open_webui.retrieval.web.main import SearchResult
|
|
from open_webui.retrieval.web.utils import get_web_loader
|
|
from open_webui.retrieval.web.brave import search_brave
|
|
from open_webui.retrieval.web.kagi import search_kagi
|
|
from open_webui.retrieval.web.mojeek import search_mojeek
|
|
from open_webui.retrieval.web.duckduckgo import search_duckduckgo
|
|
from open_webui.retrieval.web.google_pse import search_google_pse
|
|
from open_webui.retrieval.web.jina_search import search_jina
|
|
from open_webui.retrieval.web.searchapi import search_searchapi
|
|
from open_webui.retrieval.web.searxng import search_searxng
|
|
from open_webui.retrieval.web.serper import search_serper
|
|
from open_webui.retrieval.web.serply import search_serply
|
|
from open_webui.retrieval.web.serpstack import search_serpstack
|
|
from open_webui.retrieval.web.tavily import search_tavily
|
|
from open_webui.retrieval.web.bing import search_bing
|
|
|
|
|
|
from open_webui.retrieval.utils import (
|
|
get_embedding_function,
|
|
get_model_path,
|
|
query_collection,
|
|
query_collection_with_hybrid_search,
|
|
query_doc,
|
|
query_doc_with_hybrid_search,
|
|
)
|
|
from open_webui.utils.misc import (
|
|
calculate_sha256_string,
|
|
)
|
|
from open_webui.utils.auth import get_admin_user, get_verified_user
|
|
|
|
|
|
from open_webui.config import (
|
|
ENV,
|
|
RAG_EMBEDDING_MODEL_AUTO_UPDATE,
|
|
RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
|
|
RAG_RERANKING_MODEL_AUTO_UPDATE,
|
|
RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
|
|
UPLOAD_DIR,
|
|
DEFAULT_LOCALE,
|
|
)
|
|
from open_webui.env import (
|
|
SRC_LOG_LEVELS,
|
|
DEVICE_TYPE,
|
|
DOCKER,
|
|
)
|
|
from open_webui.constants import ERROR_MESSAGES
|
|
|
|
log = logging.getLogger(__name__)
|
|
log.setLevel(SRC_LOG_LEVELS["RAG"])
|
|
|
|
##########################################
|
|
#
|
|
# Utility functions
|
|
#
|
|
##########################################
|
|
|
|
|
|
def get_ef(
|
|
engine: str,
|
|
embedding_model: str,
|
|
auto_update: bool = False,
|
|
):
|
|
ef = None
|
|
if embedding_model and engine == "":
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
try:
|
|
ef = SentenceTransformer(
|
|
get_model_path(embedding_model, auto_update),
|
|
device=DEVICE_TYPE,
|
|
trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
|
|
)
|
|
except Exception as e:
|
|
log.debug(f"Error loading SentenceTransformer: {e}")
|
|
|
|
return ef
|
|
|
|
|
|
def get_rf(
|
|
reranking_model: str,
|
|
auto_update: bool = False,
|
|
):
|
|
rf = None
|
|
if reranking_model:
|
|
if any(model in reranking_model for model in ["jinaai/jina-colbert-v2"]):
|
|
try:
|
|
from open_webui.retrieval.models.colbert import ColBERT
|
|
|
|
rf = ColBERT(
|
|
get_model_path(reranking_model, auto_update),
|
|
env="docker" if DOCKER else None,
|
|
)
|
|
|
|
except Exception as e:
|
|
log.error(f"ColBERT: {e}")
|
|
raise Exception(ERROR_MESSAGES.DEFAULT(e))
|
|
else:
|
|
import sentence_transformers
|
|
|
|
try:
|
|
rf = sentence_transformers.CrossEncoder(
|
|
get_model_path(reranking_model, auto_update),
|
|
device=DEVICE_TYPE,
|
|
trust_remote_code=RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
|
|
)
|
|
except:
|
|
log.error("CrossEncoder error")
|
|
raise Exception(ERROR_MESSAGES.DEFAULT("CrossEncoder error"))
|
|
return rf
|
|
|
|
|
|
##########################################
|
|
#
|
|
# API routes
|
|
#
|
|
##########################################
|
|
|
|
|
|
router = APIRouter()
|
|
|
|
|
|
class CollectionNameForm(BaseModel):
|
|
collection_name: Optional[str] = None
|
|
|
|
|
|
class ProcessUrlForm(CollectionNameForm):
|
|
url: str
|
|
|
|
|
|
class SearchForm(CollectionNameForm):
|
|
query: str
|
|
|
|
|
|
@router.get("/")
|
|
async def get_status(request: Request):
|
|
return {
|
|
"status": True,
|
|
"chunk_size": request.app.state.config.CHUNK_SIZE,
|
|
"chunk_overlap": request.app.state.config.CHUNK_OVERLAP,
|
|
"template": request.app.state.config.RAG_TEMPLATE,
|
|
"embedding_engine": request.app.state.config.RAG_EMBEDDING_ENGINE,
|
|
"embedding_model": request.app.state.config.RAG_EMBEDDING_MODEL,
|
|
"reranking_model": request.app.state.config.RAG_RERANKING_MODEL,
|
|
"embedding_batch_size": request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
|
|
}
|
|
|
|
|
|
@router.get("/embedding")
|
|
async def get_embedding_config(request: Request, user=Depends(get_admin_user)):
|
|
return {
|
|
"status": True,
|
|
"embedding_engine": request.app.state.config.RAG_EMBEDDING_ENGINE,
|
|
"embedding_model": request.app.state.config.RAG_EMBEDDING_MODEL,
|
|
"embedding_batch_size": request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
|
|
"openai_config": {
|
|
"url": request.app.state.config.RAG_OPENAI_API_BASE_URL,
|
|
"key": request.app.state.config.RAG_OPENAI_API_KEY,
|
|
},
|
|
"ollama_config": {
|
|
"url": request.app.state.config.RAG_OLLAMA_BASE_URL,
|
|
"key": request.app.state.config.RAG_OLLAMA_API_KEY,
|
|
},
|
|
}
|
|
|
|
|
|
@router.get("/reranking")
|
|
async def get_reraanking_config(request: Request, user=Depends(get_admin_user)):
|
|
return {
|
|
"status": True,
|
|
"reranking_model": request.app.state.config.RAG_RERANKING_MODEL,
|
|
}
|
|
|
|
|
|
class OpenAIConfigForm(BaseModel):
|
|
url: str
|
|
key: str
|
|
|
|
|
|
class OllamaConfigForm(BaseModel):
|
|
url: str
|
|
key: str
|
|
|
|
|
|
class EmbeddingModelUpdateForm(BaseModel):
|
|
openai_config: Optional[OpenAIConfigForm] = None
|
|
ollama_config: Optional[OllamaConfigForm] = None
|
|
embedding_engine: str
|
|
embedding_model: str
|
|
embedding_batch_size: Optional[int] = 1
|
|
|
|
|
|
@router.post("/embedding/update")
|
|
async def update_embedding_config(
|
|
request: Request, form_data: EmbeddingModelUpdateForm, user=Depends(get_admin_user)
|
|
):
|
|
log.info(
|
|
f"Updating embedding model: {request.app.state.config.RAG_EMBEDDING_MODEL} to {form_data.embedding_model}"
|
|
)
|
|
try:
|
|
request.app.state.config.RAG_EMBEDDING_ENGINE = form_data.embedding_engine
|
|
request.app.state.config.RAG_EMBEDDING_MODEL = form_data.embedding_model
|
|
|
|
if request.app.state.config.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]:
|
|
if form_data.openai_config is not None:
|
|
request.app.state.config.RAG_OPENAI_API_BASE_URL = (
|
|
form_data.openai_config.url
|
|
)
|
|
request.app.state.config.RAG_OPENAI_API_KEY = (
|
|
form_data.openai_config.key
|
|
)
|
|
|
|
if form_data.ollama_config is not None:
|
|
request.app.state.config.RAG_OLLAMA_BASE_URL = (
|
|
form_data.ollama_config.url
|
|
)
|
|
request.app.state.config.RAG_OLLAMA_API_KEY = (
|
|
form_data.ollama_config.key
|
|
)
|
|
|
|
request.app.state.config.RAG_EMBEDDING_BATCH_SIZE = (
|
|
form_data.embedding_batch_size
|
|
)
|
|
|
|
request.app.state.ef = get_ef(
|
|
request.app.state.config.RAG_EMBEDDING_ENGINE,
|
|
request.app.state.config.RAG_EMBEDDING_MODEL,
|
|
)
|
|
|
|
request.app.state.EMBEDDING_FUNCTION = get_embedding_function(
|
|
request.app.state.config.RAG_EMBEDDING_ENGINE,
|
|
request.app.state.config.RAG_EMBEDDING_MODEL,
|
|
request.app.state.ef,
|
|
(
|
|
request.app.state.config.RAG_OPENAI_API_BASE_URL
|
|
if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
|
|
else request.app.state.config.RAG_OLLAMA_BASE_URL
|
|
),
|
|
(
|
|
request.app.state.config.RAG_OPENAI_API_KEY
|
|
if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
|
|
else request.app.state.config.RAG_OLLAMA_API_KEY
|
|
),
|
|
request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
|
|
)
|
|
|
|
return {
|
|
"status": True,
|
|
"embedding_engine": request.app.state.config.RAG_EMBEDDING_ENGINE,
|
|
"embedding_model": request.app.state.config.RAG_EMBEDDING_MODEL,
|
|
"embedding_batch_size": request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
|
|
"openai_config": {
|
|
"url": request.app.state.config.RAG_OPENAI_API_BASE_URL,
|
|
"key": request.app.state.config.RAG_OPENAI_API_KEY,
|
|
},
|
|
"ollama_config": {
|
|
"url": request.app.state.config.RAG_OLLAMA_BASE_URL,
|
|
"key": request.app.state.config.RAG_OLLAMA_API_KEY,
|
|
},
|
|
}
|
|
except Exception as e:
|
|
log.exception(f"Problem updating embedding model: {e}")
|
|
raise HTTPException(
|
|
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
|
detail=ERROR_MESSAGES.DEFAULT(e),
|
|
)
|
|
|
|
|
|
class RerankingModelUpdateForm(BaseModel):
|
|
reranking_model: str
|
|
|
|
|
|
@router.post("/reranking/update")
|
|
async def update_reranking_config(
|
|
request: Request, form_data: RerankingModelUpdateForm, user=Depends(get_admin_user)
|
|
):
|
|
log.info(
|
|
f"Updating reranking model: {request.app.state.config.RAG_RERANKING_MODEL} to {form_data.reranking_model}"
|
|
)
|
|
try:
|
|
request.app.state.config.RAG_RERANKING_MODEL = form_data.reranking_model
|
|
|
|
try:
|
|
request.app.state.rf = get_rf(
|
|
request.app.state.config.RAG_RERANKING_MODEL,
|
|
True,
|
|
)
|
|
except Exception as e:
|
|
log.error(f"Error loading reranking model: {e}")
|
|
request.app.state.config.ENABLE_RAG_HYBRID_SEARCH = False
|
|
|
|
return {
|
|
"status": True,
|
|
"reranking_model": request.app.state.config.RAG_RERANKING_MODEL,
|
|
}
|
|
except Exception as e:
|
|
log.exception(f"Problem updating reranking model: {e}")
|
|
raise HTTPException(
|
|
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
|
detail=ERROR_MESSAGES.DEFAULT(e),
|
|
)
|
|
|
|
|
|
@router.get("/config")
|
|
async def get_rag_config(request: Request, user=Depends(get_admin_user)):
|
|
return {
|
|
"status": True,
|
|
"pdf_extract_images": request.app.state.config.PDF_EXTRACT_IMAGES,
|
|
"enable_google_drive_integration": request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION,
|
|
"content_extraction": {
|
|
"engine": request.app.state.config.CONTENT_EXTRACTION_ENGINE,
|
|
"tika_server_url": request.app.state.config.TIKA_SERVER_URL,
|
|
},
|
|
"chunk": {
|
|
"text_splitter": request.app.state.config.TEXT_SPLITTER,
|
|
"chunk_size": request.app.state.config.CHUNK_SIZE,
|
|
"chunk_overlap": request.app.state.config.CHUNK_OVERLAP,
|
|
},
|
|
"file": {
|
|
"max_size": request.app.state.config.FILE_MAX_SIZE,
|
|
"max_count": request.app.state.config.FILE_MAX_COUNT,
|
|
},
|
|
"youtube": {
|
|
"language": request.app.state.config.YOUTUBE_LOADER_LANGUAGE,
|
|
"translation": request.app.state.YOUTUBE_LOADER_TRANSLATION,
|
|
"proxy_url": request.app.state.config.YOUTUBE_LOADER_PROXY_URL,
|
|
},
|
|
"web": {
|
|
"web_loader_ssl_verification": request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
|
|
"search": {
|
|
"enabled": request.app.state.config.ENABLE_RAG_WEB_SEARCH,
|
|
"drive": request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION,
|
|
"engine": request.app.state.config.RAG_WEB_SEARCH_ENGINE,
|
|
"searxng_query_url": request.app.state.config.SEARXNG_QUERY_URL,
|
|
"google_pse_api_key": request.app.state.config.GOOGLE_PSE_API_KEY,
|
|
"google_pse_engine_id": request.app.state.config.GOOGLE_PSE_ENGINE_ID,
|
|
"brave_search_api_key": request.app.state.config.BRAVE_SEARCH_API_KEY,
|
|
"kagi_search_api_key": request.app.state.config.KAGI_SEARCH_API_KEY,
|
|
"mojeek_search_api_key": request.app.state.config.MOJEEK_SEARCH_API_KEY,
|
|
"serpstack_api_key": request.app.state.config.SERPSTACK_API_KEY,
|
|
"serpstack_https": request.app.state.config.SERPSTACK_HTTPS,
|
|
"serper_api_key": request.app.state.config.SERPER_API_KEY,
|
|
"serply_api_key": request.app.state.config.SERPLY_API_KEY,
|
|
"tavily_api_key": request.app.state.config.TAVILY_API_KEY,
|
|
"searchapi_api_key": request.app.state.config.SEARCHAPI_API_KEY,
|
|
"searchapi_engine": request.app.state.config.SEARCHAPI_ENGINE,
|
|
"jina_api_key": request.app.state.config.JINA_API_KEY,
|
|
"bing_search_v7_endpoint": request.app.state.config.BING_SEARCH_V7_ENDPOINT,
|
|
"bing_search_v7_subscription_key": request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY,
|
|
"result_count": request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
|
|
"concurrent_requests": request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
|
|
},
|
|
},
|
|
}
|
|
|
|
|
|
class FileConfig(BaseModel):
|
|
max_size: Optional[int] = None
|
|
max_count: Optional[int] = None
|
|
|
|
|
|
class ContentExtractionConfig(BaseModel):
|
|
engine: str = ""
|
|
tika_server_url: Optional[str] = None
|
|
|
|
|
|
class ChunkParamUpdateForm(BaseModel):
|
|
text_splitter: Optional[str] = None
|
|
chunk_size: int
|
|
chunk_overlap: int
|
|
|
|
|
|
class YoutubeLoaderConfig(BaseModel):
|
|
language: list[str]
|
|
translation: Optional[str] = None
|
|
proxy_url: str = ""
|
|
|
|
|
|
class WebSearchConfig(BaseModel):
|
|
enabled: bool
|
|
engine: Optional[str] = None
|
|
searxng_query_url: Optional[str] = None
|
|
google_pse_api_key: Optional[str] = None
|
|
google_pse_engine_id: Optional[str] = None
|
|
brave_search_api_key: Optional[str] = None
|
|
kagi_search_api_key: Optional[str] = None
|
|
mojeek_search_api_key: Optional[str] = None
|
|
serpstack_api_key: Optional[str] = None
|
|
serpstack_https: Optional[bool] = None
|
|
serper_api_key: Optional[str] = None
|
|
serply_api_key: Optional[str] = None
|
|
tavily_api_key: Optional[str] = None
|
|
searchapi_api_key: Optional[str] = None
|
|
searchapi_engine: Optional[str] = None
|
|
jina_api_key: Optional[str] = None
|
|
bing_search_v7_endpoint: Optional[str] = None
|
|
bing_search_v7_subscription_key: Optional[str] = None
|
|
result_count: Optional[int] = None
|
|
concurrent_requests: Optional[int] = None
|
|
|
|
|
|
class WebConfig(BaseModel):
|
|
search: WebSearchConfig
|
|
web_loader_ssl_verification: Optional[bool] = None
|
|
|
|
|
|
class ConfigUpdateForm(BaseModel):
|
|
pdf_extract_images: Optional[bool] = None
|
|
enable_google_drive_integration: Optional[bool] = None
|
|
file: Optional[FileConfig] = None
|
|
content_extraction: Optional[ContentExtractionConfig] = None
|
|
chunk: Optional[ChunkParamUpdateForm] = None
|
|
youtube: Optional[YoutubeLoaderConfig] = None
|
|
web: Optional[WebConfig] = None
|
|
|
|
|
|
@router.post("/config/update")
|
|
async def update_rag_config(
|
|
request: Request, form_data: ConfigUpdateForm, user=Depends(get_admin_user)
|
|
):
|
|
request.app.state.config.PDF_EXTRACT_IMAGES = (
|
|
form_data.pdf_extract_images
|
|
if form_data.pdf_extract_images is not None
|
|
else request.app.state.config.PDF_EXTRACT_IMAGES
|
|
)
|
|
|
|
request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION = (
|
|
form_data.enable_google_drive_integration
|
|
if form_data.enable_google_drive_integration is not None
|
|
else request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION
|
|
)
|
|
|
|
if form_data.file is not None:
|
|
request.app.state.config.FILE_MAX_SIZE = form_data.file.max_size
|
|
request.app.state.config.FILE_MAX_COUNT = form_data.file.max_count
|
|
|
|
if form_data.content_extraction is not None:
|
|
log.info(f"Updating text settings: {form_data.content_extraction}")
|
|
request.app.state.config.CONTENT_EXTRACTION_ENGINE = (
|
|
form_data.content_extraction.engine
|
|
)
|
|
request.app.state.config.TIKA_SERVER_URL = (
|
|
form_data.content_extraction.tika_server_url
|
|
)
|
|
|
|
if form_data.chunk is not None:
|
|
request.app.state.config.TEXT_SPLITTER = form_data.chunk.text_splitter
|
|
request.app.state.config.CHUNK_SIZE = form_data.chunk.chunk_size
|
|
request.app.state.config.CHUNK_OVERLAP = form_data.chunk.chunk_overlap
|
|
|
|
if form_data.youtube is not None:
|
|
request.app.state.config.YOUTUBE_LOADER_LANGUAGE = form_data.youtube.language
|
|
request.app.state.config.YOUTUBE_LOADER_PROXY_URL = form_data.youtube.proxy_url
|
|
request.app.state.YOUTUBE_LOADER_TRANSLATION = form_data.youtube.translation
|
|
|
|
if form_data.web is not None:
|
|
request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION = (
|
|
# Note: When UI "Bypass SSL verification for Websites"=True then ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION=False
|
|
form_data.web.web_loader_ssl_verification
|
|
)
|
|
|
|
request.app.state.config.ENABLE_RAG_WEB_SEARCH = form_data.web.search.enabled
|
|
request.app.state.config.RAG_WEB_SEARCH_ENGINE = form_data.web.search.engine
|
|
request.app.state.config.SEARXNG_QUERY_URL = (
|
|
form_data.web.search.searxng_query_url
|
|
)
|
|
request.app.state.config.GOOGLE_PSE_API_KEY = (
|
|
form_data.web.search.google_pse_api_key
|
|
)
|
|
request.app.state.config.GOOGLE_PSE_ENGINE_ID = (
|
|
form_data.web.search.google_pse_engine_id
|
|
)
|
|
request.app.state.config.BRAVE_SEARCH_API_KEY = (
|
|
form_data.web.search.brave_search_api_key
|
|
)
|
|
request.app.state.config.KAGI_SEARCH_API_KEY = (
|
|
form_data.web.search.kagi_search_api_key
|
|
)
|
|
request.app.state.config.MOJEEK_SEARCH_API_KEY = (
|
|
form_data.web.search.mojeek_search_api_key
|
|
)
|
|
request.app.state.config.SERPSTACK_API_KEY = (
|
|
form_data.web.search.serpstack_api_key
|
|
)
|
|
request.app.state.config.SERPSTACK_HTTPS = form_data.web.search.serpstack_https
|
|
request.app.state.config.SERPER_API_KEY = form_data.web.search.serper_api_key
|
|
request.app.state.config.SERPLY_API_KEY = form_data.web.search.serply_api_key
|
|
request.app.state.config.TAVILY_API_KEY = form_data.web.search.tavily_api_key
|
|
request.app.state.config.SEARCHAPI_API_KEY = (
|
|
form_data.web.search.searchapi_api_key
|
|
)
|
|
request.app.state.config.SEARCHAPI_ENGINE = (
|
|
form_data.web.search.searchapi_engine
|
|
)
|
|
|
|
request.app.state.config.JINA_API_KEY = form_data.web.search.jina_api_key
|
|
request.app.state.config.BING_SEARCH_V7_ENDPOINT = (
|
|
form_data.web.search.bing_search_v7_endpoint
|
|
)
|
|
request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY = (
|
|
form_data.web.search.bing_search_v7_subscription_key
|
|
)
|
|
|
|
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT = (
|
|
form_data.web.search.result_count
|
|
)
|
|
request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS = (
|
|
form_data.web.search.concurrent_requests
|
|
)
|
|
|
|
return {
|
|
"status": True,
|
|
"pdf_extract_images": request.app.state.config.PDF_EXTRACT_IMAGES,
|
|
"file": {
|
|
"max_size": request.app.state.config.FILE_MAX_SIZE,
|
|
"max_count": request.app.state.config.FILE_MAX_COUNT,
|
|
},
|
|
"content_extraction": {
|
|
"engine": request.app.state.config.CONTENT_EXTRACTION_ENGINE,
|
|
"tika_server_url": request.app.state.config.TIKA_SERVER_URL,
|
|
},
|
|
"chunk": {
|
|
"text_splitter": request.app.state.config.TEXT_SPLITTER,
|
|
"chunk_size": request.app.state.config.CHUNK_SIZE,
|
|
"chunk_overlap": request.app.state.config.CHUNK_OVERLAP,
|
|
},
|
|
"youtube": {
|
|
"language": request.app.state.config.YOUTUBE_LOADER_LANGUAGE,
|
|
"proxy_url": request.app.state.config.YOUTUBE_LOADER_PROXY_URL,
|
|
"translation": request.app.state.YOUTUBE_LOADER_TRANSLATION,
|
|
},
|
|
"web": {
|
|
"web_loader_ssl_verification": request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
|
|
"search": {
|
|
"enabled": request.app.state.config.ENABLE_RAG_WEB_SEARCH,
|
|
"engine": request.app.state.config.RAG_WEB_SEARCH_ENGINE,
|
|
"searxng_query_url": request.app.state.config.SEARXNG_QUERY_URL,
|
|
"google_pse_api_key": request.app.state.config.GOOGLE_PSE_API_KEY,
|
|
"google_pse_engine_id": request.app.state.config.GOOGLE_PSE_ENGINE_ID,
|
|
"brave_search_api_key": request.app.state.config.BRAVE_SEARCH_API_KEY,
|
|
"kagi_search_api_key": request.app.state.config.KAGI_SEARCH_API_KEY,
|
|
"mojeek_search_api_key": request.app.state.config.MOJEEK_SEARCH_API_KEY,
|
|
"serpstack_api_key": request.app.state.config.SERPSTACK_API_KEY,
|
|
"serpstack_https": request.app.state.config.SERPSTACK_HTTPS,
|
|
"serper_api_key": request.app.state.config.SERPER_API_KEY,
|
|
"serply_api_key": request.app.state.config.SERPLY_API_KEY,
|
|
"serachapi_api_key": request.app.state.config.SEARCHAPI_API_KEY,
|
|
"searchapi_engine": request.app.state.config.SEARCHAPI_ENGINE,
|
|
"tavily_api_key": request.app.state.config.TAVILY_API_KEY,
|
|
"jina_api_key": request.app.state.config.JINA_API_KEY,
|
|
"bing_search_v7_endpoint": request.app.state.config.BING_SEARCH_V7_ENDPOINT,
|
|
"bing_search_v7_subscription_key": request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY,
|
|
"result_count": request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
|
|
"concurrent_requests": request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
|
|
},
|
|
},
|
|
}
|
|
|
|
|
|
@router.get("/template")
|
|
async def get_rag_template(request: Request, user=Depends(get_verified_user)):
|
|
return {
|
|
"status": True,
|
|
"template": request.app.state.config.RAG_TEMPLATE,
|
|
}
|
|
|
|
|
|
@router.get("/query/settings")
|
|
async def get_query_settings(request: Request, user=Depends(get_admin_user)):
|
|
return {
|
|
"status": True,
|
|
"template": request.app.state.config.RAG_TEMPLATE,
|
|
"k": request.app.state.config.TOP_K,
|
|
"r": request.app.state.config.RELEVANCE_THRESHOLD,
|
|
"hybrid": request.app.state.config.ENABLE_RAG_HYBRID_SEARCH,
|
|
}
|
|
|
|
|
|
class QuerySettingsForm(BaseModel):
|
|
k: Optional[int] = None
|
|
r: Optional[float] = None
|
|
template: Optional[str] = None
|
|
hybrid: Optional[bool] = None
|
|
|
|
|
|
@router.post("/query/settings/update")
|
|
async def update_query_settings(
|
|
request: Request, form_data: QuerySettingsForm, user=Depends(get_admin_user)
|
|
):
|
|
request.app.state.config.RAG_TEMPLATE = form_data.template
|
|
request.app.state.config.TOP_K = form_data.k if form_data.k else 4
|
|
request.app.state.config.RELEVANCE_THRESHOLD = form_data.r if form_data.r else 0.0
|
|
|
|
request.app.state.config.ENABLE_RAG_HYBRID_SEARCH = (
|
|
form_data.hybrid if form_data.hybrid else False
|
|
)
|
|
|
|
return {
|
|
"status": True,
|
|
"template": request.app.state.config.RAG_TEMPLATE,
|
|
"k": request.app.state.config.TOP_K,
|
|
"r": request.app.state.config.RELEVANCE_THRESHOLD,
|
|
"hybrid": request.app.state.config.ENABLE_RAG_HYBRID_SEARCH,
|
|
}
|
|
|
|
|
|
####################################
|
|
#
|
|
# Document process and retrieval
|
|
#
|
|
####################################
|
|
|
|
|
|
def save_docs_to_vector_db(
|
|
request: Request,
|
|
docs,
|
|
collection_name,
|
|
metadata: Optional[dict] = None,
|
|
overwrite: bool = False,
|
|
split: bool = True,
|
|
add: bool = False,
|
|
) -> bool:
|
|
def _get_docs_info(docs: list[Document]) -> str:
|
|
docs_info = set()
|
|
|
|
# Trying to select relevant metadata identifying the document.
|
|
for doc in docs:
|
|
metadata = getattr(doc, "metadata", {})
|
|
doc_name = metadata.get("name", "")
|
|
if not doc_name:
|
|
doc_name = metadata.get("title", "")
|
|
if not doc_name:
|
|
doc_name = metadata.get("source", "")
|
|
if doc_name:
|
|
docs_info.add(doc_name)
|
|
|
|
return ", ".join(docs_info)
|
|
|
|
log.info(
|
|
f"save_docs_to_vector_db: document {_get_docs_info(docs)} {collection_name}"
|
|
)
|
|
|
|
# Check if entries with the same hash (metadata.hash) already exist
|
|
if metadata and "hash" in metadata:
|
|
result = VECTOR_DB_CLIENT.query(
|
|
collection_name=collection_name,
|
|
filter={"hash": metadata["hash"]},
|
|
)
|
|
|
|
if result is not None:
|
|
existing_doc_ids = result.ids[0]
|
|
if existing_doc_ids:
|
|
log.info(f"Document with hash {metadata['hash']} already exists")
|
|
raise ValueError(ERROR_MESSAGES.DUPLICATE_CONTENT)
|
|
|
|
if split:
|
|
if request.app.state.config.TEXT_SPLITTER in ["", "character"]:
|
|
text_splitter = RecursiveCharacterTextSplitter(
|
|
chunk_size=request.app.state.config.CHUNK_SIZE,
|
|
chunk_overlap=request.app.state.config.CHUNK_OVERLAP,
|
|
add_start_index=True,
|
|
)
|
|
elif request.app.state.config.TEXT_SPLITTER == "token":
|
|
log.info(
|
|
f"Using token text splitter: {request.app.state.config.TIKTOKEN_ENCODING_NAME}"
|
|
)
|
|
|
|
tiktoken.get_encoding(str(request.app.state.config.TIKTOKEN_ENCODING_NAME))
|
|
text_splitter = TokenTextSplitter(
|
|
encoding_name=str(request.app.state.config.TIKTOKEN_ENCODING_NAME),
|
|
chunk_size=request.app.state.config.CHUNK_SIZE,
|
|
chunk_overlap=request.app.state.config.CHUNK_OVERLAP,
|
|
add_start_index=True,
|
|
)
|
|
else:
|
|
raise ValueError(ERROR_MESSAGES.DEFAULT("Invalid text splitter"))
|
|
|
|
docs = text_splitter.split_documents(docs)
|
|
|
|
if len(docs) == 0:
|
|
raise ValueError(ERROR_MESSAGES.EMPTY_CONTENT)
|
|
|
|
texts = [doc.page_content for doc in docs]
|
|
metadatas = [
|
|
{
|
|
**doc.metadata,
|
|
**(metadata if metadata else {}),
|
|
"embedding_config": json.dumps(
|
|
{
|
|
"engine": request.app.state.config.RAG_EMBEDDING_ENGINE,
|
|
"model": request.app.state.config.RAG_EMBEDDING_MODEL,
|
|
}
|
|
),
|
|
}
|
|
for doc in docs
|
|
]
|
|
|
|
# ChromaDB does not like datetime formats
|
|
# for meta-data so convert them to string.
|
|
for metadata in metadatas:
|
|
for key, value in metadata.items():
|
|
if isinstance(value, datetime):
|
|
metadata[key] = str(value)
|
|
|
|
try:
|
|
if VECTOR_DB_CLIENT.has_collection(collection_name=collection_name):
|
|
log.info(f"collection {collection_name} already exists")
|
|
|
|
if overwrite:
|
|
VECTOR_DB_CLIENT.delete_collection(collection_name=collection_name)
|
|
log.info(f"deleting existing collection {collection_name}")
|
|
elif add is False:
|
|
log.info(
|
|
f"collection {collection_name} already exists, overwrite is False and add is False"
|
|
)
|
|
return True
|
|
|
|
log.info(f"adding to collection {collection_name}")
|
|
embedding_function = get_embedding_function(
|
|
request.app.state.config.RAG_EMBEDDING_ENGINE,
|
|
request.app.state.config.RAG_EMBEDDING_MODEL,
|
|
request.app.state.ef,
|
|
(
|
|
request.app.state.config.RAG_OPENAI_API_BASE_URL
|
|
if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
|
|
else request.app.state.config.RAG_OLLAMA_BASE_URL
|
|
),
|
|
(
|
|
request.app.state.config.RAG_OPENAI_API_KEY
|
|
if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
|
|
else request.app.state.config.RAG_OLLAMA_API_KEY
|
|
),
|
|
request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
|
|
)
|
|
|
|
embeddings = embedding_function(
|
|
list(map(lambda x: x.replace("\n", " "), texts))
|
|
)
|
|
|
|
items = [
|
|
{
|
|
"id": str(uuid.uuid4()),
|
|
"text": text,
|
|
"vector": embeddings[idx],
|
|
"metadata": metadatas[idx],
|
|
}
|
|
for idx, text in enumerate(texts)
|
|
]
|
|
|
|
VECTOR_DB_CLIENT.insert(
|
|
collection_name=collection_name,
|
|
items=items,
|
|
)
|
|
|
|
return True
|
|
except Exception as e:
|
|
log.exception(e)
|
|
raise e
|
|
|
|
|
|
class ProcessFileForm(BaseModel):
|
|
file_id: str
|
|
content: Optional[str] = None
|
|
collection_name: Optional[str] = None
|
|
|
|
|
|
@router.post("/process/file")
|
|
def process_file(
|
|
request: Request,
|
|
form_data: ProcessFileForm,
|
|
user=Depends(get_verified_user),
|
|
):
|
|
try:
|
|
file = Files.get_file_by_id(form_data.file_id)
|
|
|
|
collection_name = form_data.collection_name
|
|
|
|
if collection_name is None:
|
|
collection_name = f"file-{file.id}"
|
|
|
|
if form_data.content:
|
|
# Update the content in the file
|
|
# Usage: /files/{file_id}/data/content/update
|
|
|
|
VECTOR_DB_CLIENT.delete_collection(collection_name=f"file-{file.id}")
|
|
|
|
docs = [
|
|
Document(
|
|
page_content=form_data.content.replace("<br/>", "\n"),
|
|
metadata={
|
|
**file.meta,
|
|
"name": file.filename,
|
|
"created_by": file.user_id,
|
|
"file_id": file.id,
|
|
"source": file.filename,
|
|
},
|
|
)
|
|
]
|
|
|
|
text_content = form_data.content
|
|
elif form_data.collection_name:
|
|
# Check if the file has already been processed and save the content
|
|
# Usage: /knowledge/{id}/file/add, /knowledge/{id}/file/update
|
|
|
|
result = VECTOR_DB_CLIENT.query(
|
|
collection_name=f"file-{file.id}", filter={"file_id": file.id}
|
|
)
|
|
|
|
if result is not None and len(result.ids[0]) > 0:
|
|
docs = [
|
|
Document(
|
|
page_content=result.documents[0][idx],
|
|
metadata=result.metadatas[0][idx],
|
|
)
|
|
for idx, id in enumerate(result.ids[0])
|
|
]
|
|
else:
|
|
docs = [
|
|
Document(
|
|
page_content=file.data.get("content", ""),
|
|
metadata={
|
|
**file.meta,
|
|
"name": file.filename,
|
|
"created_by": file.user_id,
|
|
"file_id": file.id,
|
|
"source": file.filename,
|
|
},
|
|
)
|
|
]
|
|
|
|
text_content = file.data.get("content", "")
|
|
else:
|
|
# Process the file and save the content
|
|
# Usage: /files/
|
|
file_path = file.path
|
|
if file_path:
|
|
file_path = Storage.get_file(file_path)
|
|
loader = Loader(
|
|
engine=request.app.state.config.CONTENT_EXTRACTION_ENGINE,
|
|
TIKA_SERVER_URL=request.app.state.config.TIKA_SERVER_URL,
|
|
PDF_EXTRACT_IMAGES=request.app.state.config.PDF_EXTRACT_IMAGES,
|
|
)
|
|
docs = loader.load(
|
|
file.filename, file.meta.get("content_type"), file_path
|
|
)
|
|
|
|
docs = [
|
|
Document(
|
|
page_content=doc.page_content,
|
|
metadata={
|
|
**doc.metadata,
|
|
"name": file.filename,
|
|
"created_by": file.user_id,
|
|
"file_id": file.id,
|
|
"source": file.filename,
|
|
},
|
|
)
|
|
for doc in docs
|
|
]
|
|
else:
|
|
docs = [
|
|
Document(
|
|
page_content=file.data.get("content", ""),
|
|
metadata={
|
|
**file.meta,
|
|
"name": file.filename,
|
|
"created_by": file.user_id,
|
|
"file_id": file.id,
|
|
"source": file.filename,
|
|
},
|
|
)
|
|
]
|
|
text_content = " ".join([doc.page_content for doc in docs])
|
|
|
|
log.debug(f"text_content: {text_content}")
|
|
Files.update_file_data_by_id(
|
|
file.id,
|
|
{"content": text_content},
|
|
)
|
|
|
|
hash = calculate_sha256_string(text_content)
|
|
Files.update_file_hash_by_id(file.id, hash)
|
|
|
|
try:
|
|
result = save_docs_to_vector_db(
|
|
request,
|
|
docs=docs,
|
|
collection_name=collection_name,
|
|
metadata={
|
|
"file_id": file.id,
|
|
"name": file.filename,
|
|
"hash": hash,
|
|
},
|
|
add=(True if form_data.collection_name else False),
|
|
)
|
|
|
|
if result:
|
|
Files.update_file_metadata_by_id(
|
|
file.id,
|
|
{
|
|
"collection_name": collection_name,
|
|
},
|
|
)
|
|
|
|
return {
|
|
"status": True,
|
|
"collection_name": collection_name,
|
|
"filename": file.filename,
|
|
"content": text_content,
|
|
}
|
|
except Exception as e:
|
|
raise e
|
|
except Exception as e:
|
|
log.exception(e)
|
|
if "No pandoc was found" in str(e):
|
|
raise HTTPException(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED,
|
|
)
|
|
else:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
detail=str(e),
|
|
)
|
|
|
|
|
|
class ProcessTextForm(BaseModel):
|
|
name: str
|
|
content: str
|
|
collection_name: Optional[str] = None
|
|
|
|
|
|
@router.post("/process/text")
|
|
def process_text(
|
|
request: Request,
|
|
form_data: ProcessTextForm,
|
|
user=Depends(get_verified_user),
|
|
):
|
|
collection_name = form_data.collection_name
|
|
if collection_name is None:
|
|
collection_name = calculate_sha256_string(form_data.content)
|
|
|
|
docs = [
|
|
Document(
|
|
page_content=form_data.content,
|
|
metadata={"name": form_data.name, "created_by": user.id},
|
|
)
|
|
]
|
|
text_content = form_data.content
|
|
log.debug(f"text_content: {text_content}")
|
|
|
|
result = save_docs_to_vector_db(request, docs, collection_name)
|
|
if result:
|
|
return {
|
|
"status": True,
|
|
"collection_name": collection_name,
|
|
"content": text_content,
|
|
}
|
|
else:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
|
detail=ERROR_MESSAGES.DEFAULT(),
|
|
)
|
|
|
|
|
|
@router.post("/process/youtube")
|
|
def process_youtube_video(
|
|
request: Request, form_data: ProcessUrlForm, user=Depends(get_verified_user)
|
|
):
|
|
try:
|
|
collection_name = form_data.collection_name
|
|
if not collection_name:
|
|
collection_name = calculate_sha256_string(form_data.url)[:63]
|
|
|
|
loader = YoutubeLoader(
|
|
form_data.url,
|
|
language=request.app.state.config.YOUTUBE_LOADER_LANGUAGE,
|
|
proxy_url=request.app.state.config.YOUTUBE_LOADER_PROXY_URL,
|
|
)
|
|
|
|
docs = loader.load()
|
|
content = " ".join([doc.page_content for doc in docs])
|
|
log.debug(f"text_content: {content}")
|
|
|
|
save_docs_to_vector_db(request, docs, collection_name, overwrite=True)
|
|
|
|
return {
|
|
"status": True,
|
|
"collection_name": collection_name,
|
|
"filename": form_data.url,
|
|
"file": {
|
|
"data": {
|
|
"content": content,
|
|
},
|
|
"meta": {
|
|
"name": form_data.url,
|
|
},
|
|
},
|
|
}
|
|
except Exception as e:
|
|
log.exception(e)
|
|
raise HTTPException(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
detail=ERROR_MESSAGES.DEFAULT(e),
|
|
)
|
|
|
|
|
|
@router.post("/process/web")
|
|
def process_web(
|
|
request: Request, form_data: ProcessUrlForm, user=Depends(get_verified_user)
|
|
):
|
|
try:
|
|
collection_name = form_data.collection_name
|
|
if not collection_name:
|
|
collection_name = calculate_sha256_string(form_data.url)[:63]
|
|
|
|
loader = get_web_loader(
|
|
form_data.url,
|
|
verify_ssl=request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
|
|
requests_per_second=request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
|
|
)
|
|
docs = loader.load()
|
|
content = " ".join([doc.page_content for doc in docs])
|
|
|
|
log.debug(f"text_content: {content}")
|
|
save_docs_to_vector_db(request, docs, collection_name, overwrite=True)
|
|
|
|
return {
|
|
"status": True,
|
|
"collection_name": collection_name,
|
|
"filename": form_data.url,
|
|
"file": {
|
|
"data": {
|
|
"content": content,
|
|
},
|
|
"meta": {
|
|
"name": form_data.url,
|
|
},
|
|
},
|
|
}
|
|
except Exception as e:
|
|
log.exception(e)
|
|
raise HTTPException(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
detail=ERROR_MESSAGES.DEFAULT(e),
|
|
)
|
|
|
|
|
|
def search_web(request: Request, engine: str, query: str) -> list[SearchResult]:
|
|
"""Search the web using a search engine and return the results as a list of SearchResult objects.
|
|
Will look for a search engine API key in environment variables in the following order:
|
|
- SEARXNG_QUERY_URL
|
|
- GOOGLE_PSE_API_KEY + GOOGLE_PSE_ENGINE_ID
|
|
- BRAVE_SEARCH_API_KEY
|
|
- KAGI_SEARCH_API_KEY
|
|
- MOJEEK_SEARCH_API_KEY
|
|
- SERPSTACK_API_KEY
|
|
- SERPER_API_KEY
|
|
- SERPLY_API_KEY
|
|
- TAVILY_API_KEY
|
|
- SEARCHAPI_API_KEY + SEARCHAPI_ENGINE (by default `google`)
|
|
Args:
|
|
query (str): The query to search for
|
|
"""
|
|
|
|
# TODO: add playwright to search the web
|
|
if engine == "searxng":
|
|
if request.app.state.config.SEARXNG_QUERY_URL:
|
|
return search_searxng(
|
|
request.app.state.config.SEARXNG_QUERY_URL,
|
|
query,
|
|
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
|
|
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
|
|
)
|
|
else:
|
|
raise Exception("No SEARXNG_QUERY_URL found in environment variables")
|
|
elif engine == "google_pse":
|
|
if (
|
|
request.app.state.config.GOOGLE_PSE_API_KEY
|
|
and request.app.state.config.GOOGLE_PSE_ENGINE_ID
|
|
):
|
|
return search_google_pse(
|
|
request.app.state.config.GOOGLE_PSE_API_KEY,
|
|
request.app.state.config.GOOGLE_PSE_ENGINE_ID,
|
|
query,
|
|
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
|
|
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
|
|
)
|
|
else:
|
|
raise Exception(
|
|
"No GOOGLE_PSE_API_KEY or GOOGLE_PSE_ENGINE_ID found in environment variables"
|
|
)
|
|
elif engine == "brave":
|
|
if request.app.state.config.BRAVE_SEARCH_API_KEY:
|
|
return search_brave(
|
|
request.app.state.config.BRAVE_SEARCH_API_KEY,
|
|
query,
|
|
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
|
|
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
|
|
)
|
|
else:
|
|
raise Exception("No BRAVE_SEARCH_API_KEY found in environment variables")
|
|
elif engine == "kagi":
|
|
if request.app.state.config.KAGI_SEARCH_API_KEY:
|
|
return search_kagi(
|
|
request.app.state.config.KAGI_SEARCH_API_KEY,
|
|
query,
|
|
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
|
|
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
|
|
)
|
|
else:
|
|
raise Exception("No KAGI_SEARCH_API_KEY found in environment variables")
|
|
elif engine == "mojeek":
|
|
if request.app.state.config.MOJEEK_SEARCH_API_KEY:
|
|
return search_mojeek(
|
|
request.app.state.config.MOJEEK_SEARCH_API_KEY,
|
|
query,
|
|
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
|
|
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
|
|
)
|
|
else:
|
|
raise Exception("No MOJEEK_SEARCH_API_KEY found in environment variables")
|
|
elif engine == "serpstack":
|
|
if request.app.state.config.SERPSTACK_API_KEY:
|
|
return search_serpstack(
|
|
request.app.state.config.SERPSTACK_API_KEY,
|
|
query,
|
|
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
|
|
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
|
|
https_enabled=request.app.state.config.SERPSTACK_HTTPS,
|
|
)
|
|
else:
|
|
raise Exception("No SERPSTACK_API_KEY found in environment variables")
|
|
elif engine == "serper":
|
|
if request.app.state.config.SERPER_API_KEY:
|
|
return search_serper(
|
|
request.app.state.config.SERPER_API_KEY,
|
|
query,
|
|
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
|
|
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
|
|
)
|
|
else:
|
|
raise Exception("No SERPER_API_KEY found in environment variables")
|
|
elif engine == "serply":
|
|
if request.app.state.config.SERPLY_API_KEY:
|
|
return search_serply(
|
|
request.app.state.config.SERPLY_API_KEY,
|
|
query,
|
|
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
|
|
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
|
|
)
|
|
else:
|
|
raise Exception("No SERPLY_API_KEY found in environment variables")
|
|
elif engine == "duckduckgo":
|
|
return search_duckduckgo(
|
|
query,
|
|
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
|
|
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
|
|
)
|
|
elif engine == "tavily":
|
|
if request.app.state.config.TAVILY_API_KEY:
|
|
return search_tavily(
|
|
request.app.state.config.TAVILY_API_KEY,
|
|
query,
|
|
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
|
|
)
|
|
else:
|
|
raise Exception("No TAVILY_API_KEY found in environment variables")
|
|
elif engine == "searchapi":
|
|
if request.app.state.config.SEARCHAPI_API_KEY:
|
|
return search_searchapi(
|
|
request.app.state.config.SEARCHAPI_API_KEY,
|
|
request.app.state.config.SEARCHAPI_ENGINE,
|
|
query,
|
|
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
|
|
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
|
|
)
|
|
else:
|
|
raise Exception("No SEARCHAPI_API_KEY found in environment variables")
|
|
elif engine == "jina":
|
|
return search_jina(
|
|
request.app.state.config.JINA_API_KEY,
|
|
query,
|
|
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
|
|
)
|
|
elif engine == "bing":
|
|
return search_bing(
|
|
request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY,
|
|
request.app.state.config.BING_SEARCH_V7_ENDPOINT,
|
|
str(DEFAULT_LOCALE),
|
|
query,
|
|
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
|
|
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
|
|
)
|
|
else:
|
|
raise Exception("No search engine API key found in environment variables")
|
|
|
|
|
|
@router.post("/process/web/search")
|
|
def process_web_search(
|
|
request: Request, form_data: SearchForm, user=Depends(get_verified_user)
|
|
):
|
|
try:
|
|
logging.info(
|
|
f"trying to web search with {request.app.state.config.RAG_WEB_SEARCH_ENGINE, form_data.query}"
|
|
)
|
|
web_results = search_web(
|
|
request, request.app.state.config.RAG_WEB_SEARCH_ENGINE, form_data.query
|
|
)
|
|
except Exception as e:
|
|
log.exception(e)
|
|
|
|
raise HTTPException(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
detail=ERROR_MESSAGES.WEB_SEARCH_ERROR(e),
|
|
)
|
|
|
|
log.debug(f"web_results: {web_results}")
|
|
|
|
try:
|
|
collection_name = form_data.collection_name
|
|
if collection_name == "" or collection_name is None:
|
|
collection_name = f"web-search-{calculate_sha256_string(form_data.query)}"[
|
|
:63
|
|
]
|
|
|
|
urls = [result.link for result in web_results]
|
|
loader = get_web_loader(
|
|
urls,
|
|
verify_ssl=request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
|
|
requests_per_second=request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
|
|
)
|
|
docs = loader.load()
|
|
save_docs_to_vector_db(request, docs, collection_name, overwrite=True)
|
|
|
|
return {
|
|
"status": True,
|
|
"collection_name": collection_name,
|
|
"filenames": urls,
|
|
}
|
|
except Exception as e:
|
|
log.exception(e)
|
|
raise HTTPException(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
detail=ERROR_MESSAGES.DEFAULT(e),
|
|
)
|
|
|
|
|
|
class QueryDocForm(BaseModel):
|
|
collection_name: str
|
|
query: str
|
|
k: Optional[int] = None
|
|
r: Optional[float] = None
|
|
hybrid: Optional[bool] = None
|
|
|
|
|
|
@router.post("/query/doc")
|
|
def query_doc_handler(
|
|
request: Request,
|
|
form_data: QueryDocForm,
|
|
user=Depends(get_verified_user),
|
|
):
|
|
try:
|
|
if request.app.state.config.ENABLE_RAG_HYBRID_SEARCH:
|
|
return query_doc_with_hybrid_search(
|
|
collection_name=form_data.collection_name,
|
|
query=form_data.query,
|
|
embedding_function=request.app.state.EMBEDDING_FUNCTION,
|
|
k=form_data.k if form_data.k else request.app.state.config.TOP_K,
|
|
reranking_function=request.app.state.rf,
|
|
r=(
|
|
form_data.r
|
|
if form_data.r
|
|
else request.app.state.config.RELEVANCE_THRESHOLD
|
|
),
|
|
)
|
|
else:
|
|
return query_doc(
|
|
collection_name=form_data.collection_name,
|
|
query_embedding=request.app.state.EMBEDDING_FUNCTION(form_data.query),
|
|
k=form_data.k if form_data.k else request.app.state.config.TOP_K,
|
|
)
|
|
except Exception as e:
|
|
log.exception(e)
|
|
raise HTTPException(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
detail=ERROR_MESSAGES.DEFAULT(e),
|
|
)
|
|
|
|
|
|
class QueryCollectionsForm(BaseModel):
|
|
collection_names: list[str]
|
|
query: str
|
|
k: Optional[int] = None
|
|
r: Optional[float] = None
|
|
hybrid: Optional[bool] = None
|
|
|
|
|
|
@router.post("/query/collection")
|
|
def query_collection_handler(
|
|
request: Request,
|
|
form_data: QueryCollectionsForm,
|
|
user=Depends(get_verified_user),
|
|
):
|
|
try:
|
|
if request.app.state.config.ENABLE_RAG_HYBRID_SEARCH:
|
|
return query_collection_with_hybrid_search(
|
|
collection_names=form_data.collection_names,
|
|
queries=[form_data.query],
|
|
embedding_function=request.app.state.EMBEDDING_FUNCTION,
|
|
k=form_data.k if form_data.k else request.app.state.config.TOP_K,
|
|
reranking_function=request.app.state.rf,
|
|
r=(
|
|
form_data.r
|
|
if form_data.r
|
|
else request.app.state.config.RELEVANCE_THRESHOLD
|
|
),
|
|
)
|
|
else:
|
|
return query_collection(
|
|
collection_names=form_data.collection_names,
|
|
queries=[form_data.query],
|
|
embedding_function=request.app.state.EMBEDDING_FUNCTION,
|
|
k=form_data.k if form_data.k else request.app.state.config.TOP_K,
|
|
)
|
|
|
|
except Exception as e:
|
|
log.exception(e)
|
|
raise HTTPException(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
detail=ERROR_MESSAGES.DEFAULT(e),
|
|
)
|
|
|
|
|
|
####################################
|
|
#
|
|
# Vector DB operations
|
|
#
|
|
####################################
|
|
|
|
|
|
class DeleteForm(BaseModel):
|
|
collection_name: str
|
|
file_id: str
|
|
|
|
|
|
@router.post("/delete")
|
|
def delete_entries_from_collection(form_data: DeleteForm, user=Depends(get_admin_user)):
|
|
try:
|
|
if VECTOR_DB_CLIENT.has_collection(collection_name=form_data.collection_name):
|
|
file = Files.get_file_by_id(form_data.file_id)
|
|
hash = file.hash
|
|
|
|
VECTOR_DB_CLIENT.delete(
|
|
collection_name=form_data.collection_name,
|
|
metadata={"hash": hash},
|
|
)
|
|
return {"status": True}
|
|
else:
|
|
return {"status": False}
|
|
except Exception as e:
|
|
log.exception(e)
|
|
return {"status": False}
|
|
|
|
|
|
@router.post("/reset/db")
|
|
def reset_vector_db(user=Depends(get_admin_user)):
|
|
VECTOR_DB_CLIENT.reset()
|
|
Knowledges.delete_all_knowledge()
|
|
|
|
|
|
@router.post("/reset/uploads")
|
|
def reset_upload_dir(user=Depends(get_admin_user)) -> bool:
|
|
folder = f"{UPLOAD_DIR}"
|
|
try:
|
|
# Check if the directory exists
|
|
if os.path.exists(folder):
|
|
# Iterate over all the files and directories in the specified directory
|
|
for filename in os.listdir(folder):
|
|
file_path = os.path.join(folder, filename)
|
|
try:
|
|
if os.path.isfile(file_path) or os.path.islink(file_path):
|
|
os.unlink(file_path) # Remove the file or link
|
|
elif os.path.isdir(file_path):
|
|
shutil.rmtree(file_path) # Remove the directory
|
|
except Exception as e:
|
|
print(f"Failed to delete {file_path}. Reason: {e}")
|
|
else:
|
|
print(f"The directory {folder} does not exist")
|
|
except Exception as e:
|
|
print(f"Failed to process the directory {folder}. Reason: {e}")
|
|
return True
|
|
|
|
|
|
if ENV == "dev":
|
|
|
|
@router.get("/ef/{text}")
|
|
async def get_embeddings(request: Request, text: Optional[str] = "Hello World!"):
|
|
return {"result": request.app.state.EMBEDDING_FUNCTION(text)}
|
|
|
|
|
|
class BatchProcessFilesForm(BaseModel):
|
|
files: List[FileModel]
|
|
collection_name: str
|
|
|
|
|
|
class BatchProcessFilesResult(BaseModel):
|
|
file_id: str
|
|
status: str
|
|
error: Optional[str] = None
|
|
|
|
|
|
class BatchProcessFilesResponse(BaseModel):
|
|
results: List[BatchProcessFilesResult]
|
|
errors: List[BatchProcessFilesResult]
|
|
|
|
|
|
@router.post("/process/files/batch")
|
|
def process_files_batch(
|
|
request: Request,
|
|
form_data: BatchProcessFilesForm,
|
|
user=Depends(get_verified_user),
|
|
) -> BatchProcessFilesResponse:
|
|
"""
|
|
Process a batch of files and save them to the vector database.
|
|
"""
|
|
results: List[BatchProcessFilesResult] = []
|
|
errors: List[BatchProcessFilesResult] = []
|
|
collection_name = form_data.collection_name
|
|
|
|
# Prepare all documents first
|
|
all_docs: List[Document] = []
|
|
for file in form_data.files:
|
|
try:
|
|
text_content = file.data.get("content", "")
|
|
|
|
docs: List[Document] = [
|
|
Document(
|
|
page_content=text_content.replace("<br/>", "\n"),
|
|
metadata={
|
|
**file.meta,
|
|
"name": file.filename,
|
|
"created_by": file.user_id,
|
|
"file_id": file.id,
|
|
"source": file.filename,
|
|
},
|
|
)
|
|
]
|
|
|
|
hash = calculate_sha256_string(text_content)
|
|
Files.update_file_hash_by_id(file.id, hash)
|
|
Files.update_file_data_by_id(file.id, {"content": text_content})
|
|
|
|
all_docs.extend(docs)
|
|
results.append(BatchProcessFilesResult(file_id=file.id, status="prepared"))
|
|
|
|
except Exception as e:
|
|
log.error(f"process_files_batch: Error processing file {file.id}: {str(e)}")
|
|
errors.append(
|
|
BatchProcessFilesResult(file_id=file.id, status="failed", error=str(e))
|
|
)
|
|
|
|
# Save all documents in one batch
|
|
if all_docs:
|
|
try:
|
|
save_docs_to_vector_db(
|
|
request=request,
|
|
docs=all_docs,
|
|
collection_name=collection_name,
|
|
add=True,
|
|
)
|
|
|
|
# Update all files with collection name
|
|
for result in results:
|
|
Files.update_file_metadata_by_id(
|
|
result.file_id, {"collection_name": collection_name}
|
|
)
|
|
result.status = "completed"
|
|
|
|
except Exception as e:
|
|
log.error(
|
|
f"process_files_batch: Error saving documents to vector DB: {str(e)}"
|
|
)
|
|
for result in results:
|
|
result.status = "failed"
|
|
errors.append(
|
|
BatchProcessFilesResult(file_id=result.file_id, error=str(e))
|
|
)
|
|
|
|
return BatchProcessFilesResponse(results=results, errors=errors)
|