from typing import Optional from qdrant_client import QdrantClient as Qclient from qdrant_client.http.models import PointStruct from qdrant_client.models import models from open_webui.apps.retrieval.vector.main import VectorItem, SearchResult, GetResult from open_webui.config import QDRANT_URI NO_LIMIT = 999999999 class QdrantClient: def __init__(self): self.collection_prefix = "open-webui" self.QDRANT_URI = QDRANT_URI self.client = Qclient(url=self.QDRANT_URI) if self.QDRANT_URI else None def _result_to_get_result(self, points) -> GetResult: ids = [] documents = [] metadatas = [] for point in points: payload = point.payload ids.append(point.id) documents.append(payload["text"]) metadatas.append(payload["metadata"]) return GetResult( **{ "ids": [ids], "documents": [documents], "metadatas": [metadatas], } ) def _create_collection(self, collection_name: str, dimension: int): collection_name_with_prefix = f"{self.collection_prefix}_{collection_name}" self.client.create_collection( collection_name=collection_name_with_prefix, vectors_config=models.VectorParams(size=dimension, distance=models.Distance.COSINE), ) print(f"collection {collection_name_with_prefix} successfully created!") def _create_collection_if_not_exists(self, collection_name, dimension): if not self.has_collection( collection_name=collection_name ): self._create_collection( collection_name=collection_name, dimension=dimension ) def _create_points(self, items: list[VectorItem]): return [ PointStruct( id=item["id"], vector=item["vector"], payload={ "text": item["text"], "metadata": item["metadata"] }, ) for item in items ] def has_collection(self, collection_name: str) -> bool: return self.client.collection_exists(f"{self.collection_prefix}_{collection_name}") def delete_collection(self, collection_name: str): return self.client.delete_collection(collection_name=f"{self.collection_prefix}_{collection_name}") def search( self, collection_name: str, vectors: list[list[float | int]], limit: int ) -> Optional[SearchResult]: # Search for the nearest neighbor items based on the vectors and return 'limit' number of results. if limit is None: limit = NO_LIMIT # otherwise qdrant would set limit to 10! query_response = self.client.query_points( collection_name=f"{self.collection_prefix}_{collection_name}", query=vectors[0], limit=limit, ) get_result = self._result_to_get_result(query_response.points) return SearchResult( ids=get_result.ids, documents=get_result.documents, metadatas=get_result.metadatas, distances=[[point.score for point in query_response.points]] ) def query(self, collection_name: str, filter: dict, limit: Optional[int] = None): # Construct the filter string for querying if not self.has_collection(collection_name): return None try: if limit is None: limit = NO_LIMIT # otherwise qdrant would set limit to 10! field_conditions = [] for key, value in filter.items(): field_conditions.append( models.FieldCondition(key=f"metadata.{key}", match=models.MatchValue(value=value))) points = self.client.query_points( collection_name=f"{self.collection_prefix}_{collection_name}", query_filter=models.Filter(should=field_conditions), limit=limit, ) return self._result_to_get_result(points.points) except Exception as e: print(e) return None def get(self, collection_name: str) -> Optional[GetResult]: # Get all the items in the collection. points = self.client.query_points( collection_name=f"{self.collection_prefix}_{collection_name}", limit=NO_LIMIT # otherwise qdrant would set limit to 10! ) return self._result_to_get_result(points.points) def insert(self, collection_name: str, items: list[VectorItem]): # Insert the items into the collection, if the collection does not exist, it will be created. self._create_collection_if_not_exists(collection_name, len(items[0]["vector"])) points = self._create_points(items) self.client.upload_points(f"{self.collection_prefix}_{collection_name}", points) def upsert(self, collection_name: str, items: list[VectorItem]): # Update the items in the collection, if the items are not present, insert them. If the collection does not exist, it will be created. self._create_collection_if_not_exists(collection_name, len(items[0]["vector"])) points = self._create_points(items) return self.client.upsert(f"{self.collection_prefix}_{collection_name}", points) def delete( self, collection_name: str, ids: Optional[list[str]] = None, filter: Optional[dict] = None, ): # Delete the items from the collection based on the ids. field_conditions = [] if ids: for id_value in ids: field_conditions.append( models.FieldCondition( key="metadata.id", match=models.MatchValue(value=id_value), ), ), elif filter: for key, value in filter.items(): field_conditions.append( models.FieldCondition( key=f"metadata.{key}", match=models.MatchValue(value=value), ), ), return self.client.delete( collection_name=f"{self.collection_prefix}_{collection_name}", points_selector=models.FilterSelector( filter=models.Filter( must=field_conditions ) ), ) def reset(self): # Resets the database. This will delete all collections and item entries. collection_names = self.client.get_collections().collections for collection_name in collection_names: if collection_name.name.startswith(self.collection_prefix): self.client.delete_collection(collection_name=collection_name.name)