from contextlib import asynccontextmanager from bs4 import BeautifulSoup import json import markdown import time import os import sys import logging import aiohttp import requests import mimetypes import shutil import os import uuid import inspect import asyncio from fastapi import FastAPI, Request, Depends, status, UploadFile, File, Form from fastapi.staticfiles import StaticFiles from fastapi.responses import JSONResponse from fastapi import HTTPException from fastapi.middleware.wsgi import WSGIMiddleware from fastapi.middleware.cors import CORSMiddleware from starlette.exceptions import HTTPException as StarletteHTTPException from starlette.middleware.base import BaseHTTPMiddleware from starlette.responses import StreamingResponse, Response from apps.socket.main import app as socket_app from apps.ollama.main import ( app as ollama_app, OpenAIChatCompletionForm, get_all_models as get_ollama_models, generate_openai_chat_completion as generate_ollama_chat_completion, ) from apps.openai.main import ( app as openai_app, get_all_models as get_openai_models, generate_chat_completion as generate_openai_chat_completion, ) from apps.audio.main import app as audio_app from apps.images.main import app as images_app from apps.rag.main import app as rag_app from apps.webui.main import app as webui_app from pydantic import BaseModel from typing import List, Optional from apps.webui.models.models import Models, ModelModel from apps.webui.models.tools import Tools from apps.webui.utils import load_toolkit_module_by_id from utils.utils import ( get_admin_user, get_verified_user, get_current_user, get_http_authorization_cred, ) from utils.task import ( title_generation_template, search_query_generation_template, tools_function_calling_generation_template, ) from utils.misc import get_last_user_message, add_or_update_system_message from apps.rag.utils import get_rag_context, rag_template from config import ( CONFIG_DATA, WEBUI_NAME, WEBUI_URL, WEBUI_AUTH, ENV, VERSION, CHANGELOG, FRONTEND_BUILD_DIR, UPLOAD_DIR, CACHE_DIR, STATIC_DIR, ENABLE_OPENAI_API, ENABLE_OLLAMA_API, ENABLE_MODEL_FILTER, MODEL_FILTER_LIST, GLOBAL_LOG_LEVEL, SRC_LOG_LEVELS, WEBHOOK_URL, ENABLE_ADMIN_EXPORT, WEBUI_BUILD_HASH, TASK_MODEL, TASK_MODEL_EXTERNAL, TITLE_GENERATION_PROMPT_TEMPLATE, SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE, SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD, TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE, AppConfig, ) from constants import ERROR_MESSAGES logging.basicConfig(stream=sys.stdout, level=GLOBAL_LOG_LEVEL) log = logging.getLogger(__name__) log.setLevel(SRC_LOG_LEVELS["MAIN"]) class SPAStaticFiles(StaticFiles): async def get_response(self, path: str, scope): try: return await super().get_response(path, scope) except (HTTPException, StarletteHTTPException) as ex: if ex.status_code == 404: return await super().get_response("index.html", scope) else: raise ex print( rf""" ___ __ __ _ _ _ ___ / _ \ _ __ ___ _ __ \ \ / /__| |__ | | | |_ _| | | | | '_ \ / _ \ '_ \ \ \ /\ / / _ \ '_ \| | | || | | |_| | |_) | __/ | | | \ V V / __/ |_) | |_| || | \___/| .__/ \___|_| |_| \_/\_/ \___|_.__/ \___/|___| |_| v{VERSION} - building the best open-source AI user interface. {f"Commit: {WEBUI_BUILD_HASH}" if WEBUI_BUILD_HASH != "dev-build" else ""} https://github.com/open-webui/open-webui """ ) @asynccontextmanager async def lifespan(app: FastAPI): yield app = FastAPI( docs_url="/docs" if ENV == "dev" else None, redoc_url=None, lifespan=lifespan ) app.state.config = AppConfig() app.state.config.ENABLE_OPENAI_API = ENABLE_OPENAI_API app.state.config.ENABLE_OLLAMA_API = ENABLE_OLLAMA_API app.state.config.ENABLE_MODEL_FILTER = ENABLE_MODEL_FILTER app.state.config.MODEL_FILTER_LIST = MODEL_FILTER_LIST app.state.config.WEBHOOK_URL = WEBHOOK_URL app.state.config.TASK_MODEL = TASK_MODEL app.state.config.TASK_MODEL_EXTERNAL = TASK_MODEL_EXTERNAL app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE = TITLE_GENERATION_PROMPT_TEMPLATE app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE = ( SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE ) app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD = ( SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD ) app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE = ( TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE ) app.state.MODELS = {} origins = ["*"] async def get_function_call_response( messages, files, tool_id, template, task_model_id, user ): tool = Tools.get_tool_by_id(tool_id) tools_specs = json.dumps(tool.specs, indent=2) content = tools_function_calling_generation_template(template, tools_specs) user_message = get_last_user_message(messages) prompt = ( "History:\n" + "\n".join( [ f"{message['role'].upper()}: \"\"\"{message['content']}\"\"\"" for message in messages[::-1][:4] ] ) + f"\nQuery: {user_message}" ) print(prompt) payload = { "model": task_model_id, "messages": [ {"role": "system", "content": content}, {"role": "user", "content": f"Query: {prompt}"}, ], "stream": False, } try: payload = filter_pipeline(payload, user) except Exception as e: raise e model = app.state.MODELS[task_model_id] response = None try: if model["owned_by"] == "ollama": response = await generate_ollama_chat_completion(payload, user=user) else: response = await generate_openai_chat_completion(payload, user=user) content = None if hasattr(response, "body_iterator"): async for chunk in response.body_iterator: data = json.loads(chunk.decode("utf-8")) content = data["choices"][0]["message"]["content"] # Cleanup any remaining background tasks if necessary if response.background is not None: await response.background() else: content = response["choices"][0]["message"]["content"] # Parse the function response if content is not None: print(f"content: {content}") result = json.loads(content) print(result) # Call the function if "name" in result: if tool_id in webui_app.state.TOOLS: toolkit_module = webui_app.state.TOOLS[tool_id] else: toolkit_module = load_toolkit_module_by_id(tool_id) webui_app.state.TOOLS[tool_id] = toolkit_module file_handler = False # check if toolkit_module has file_handler self variable if hasattr(toolkit_module, "file_handler"): file_handler = True print("file_handler: ", file_handler) function = getattr(toolkit_module, result["name"]) function_result = None try: # Get the signature of the function sig = inspect.signature(function) params = result["parameters"] if "__user__" in sig.parameters: # Call the function with the '__user__' parameter included params = { **params, "__user__": { "id": user.id, "email": user.email, "name": user.name, "role": user.role, }, } if "__messages__" in sig.parameters: # Call the function with the '__messages__' parameter included params = { **params, "__messages__": messages, } if "__files__" in sig.parameters: # Call the function with the '__files__' parameter included params = { **params, "__files__": files, } function_result = function(**params) except Exception as e: print(e) # Add the function result to the system prompt if function_result is not None: return function_result, file_handler except Exception as e: print(f"Error: {e}") return None, False class ChatCompletionMiddleware(BaseHTTPMiddleware): async def dispatch(self, request: Request, call_next): return_citations = False if request.method == "POST" and ( "/ollama/api/chat" in request.url.path or "/chat/completions" in request.url.path ): log.debug(f"request.url.path: {request.url.path}") # Read the original request body body = await request.body() # Decode body to string body_str = body.decode("utf-8") # Parse string to JSON data = json.loads(body_str) if body_str else {} user = get_current_user( get_http_authorization_cred(request.headers.get("Authorization")) ) # Remove the citations from the body return_citations = data.get("citations", False) if "citations" in data: del data["citations"] # Set the task model task_model_id = data["model"] if task_model_id not in app.state.MODELS: raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail="Model not found", ) # Check if the user has a custom task model # If the user has a custom task model, use that model if app.state.MODELS[task_model_id]["owned_by"] == "ollama": if ( app.state.config.TASK_MODEL and app.state.config.TASK_MODEL in app.state.MODELS ): task_model_id = app.state.config.TASK_MODEL else: if ( app.state.config.TASK_MODEL_EXTERNAL and app.state.config.TASK_MODEL_EXTERNAL in app.state.MODELS ): task_model_id = app.state.config.TASK_MODEL_EXTERNAL prompt = get_last_user_message(data["messages"]) context = "" # If tool_ids field is present, call the functions skip_files = False if "tool_ids" in data: print(data["tool_ids"]) for tool_id in data["tool_ids"]: print(tool_id) try: response, file_handler = await get_function_call_response( messages=data["messages"], files=data.get("files", []), tool_id=tool_id, template=app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE, task_model_id=task_model_id, user=user, ) print(file_handler) if isinstance(response, str): context += ("\n" if context != "" else "") + response if file_handler: skip_files = True except Exception as e: print(f"Error: {e}") del data["tool_ids"] print(f"tool_context: {context}") # If files field is present, generate RAG completions # If skip_files is True, skip the RAG completions if "files" in data: if not skip_files: data = {**data} rag_context, citations = get_rag_context( files=data["files"], messages=data["messages"], embedding_function=rag_app.state.EMBEDDING_FUNCTION, k=rag_app.state.config.TOP_K, reranking_function=rag_app.state.sentence_transformer_rf, r=rag_app.state.config.RELEVANCE_THRESHOLD, hybrid_search=rag_app.state.config.ENABLE_RAG_HYBRID_SEARCH, ) if rag_context: context += ("\n" if context != "" else "") + rag_context log.debug(f"rag_context: {rag_context}, citations: {citations}") else: return_citations = False del data["files"] if context != "": system_prompt = rag_template( rag_app.state.config.RAG_TEMPLATE, context, prompt ) print(system_prompt) data["messages"] = add_or_update_system_message( f"\n{system_prompt}", data["messages"] ) modified_body_bytes = json.dumps(data).encode("utf-8") # Replace the request body with the modified one request._body = modified_body_bytes # Set custom header to ensure content-length matches new body length request.headers.__dict__["_list"] = [ (b"content-length", str(len(modified_body_bytes)).encode("utf-8")), *[ (k, v) for k, v in request.headers.raw if k.lower() != b"content-length" ], ] response = await call_next(request) if return_citations: # Inject the citations into the response if isinstance(response, StreamingResponse): # If it's a streaming response, inject it as SSE event or NDJSON line content_type = response.headers.get("Content-Type") if "text/event-stream" in content_type: return StreamingResponse( self.openai_stream_wrapper(response.body_iterator, citations), ) if "application/x-ndjson" in content_type: return StreamingResponse( self.ollama_stream_wrapper(response.body_iterator, citations), ) return response async def _receive(self, body: bytes): return {"type": "http.request", "body": body, "more_body": False} async def openai_stream_wrapper(self, original_generator, citations): yield f"data: {json.dumps({'citations': citations})}\n\n" async for data in original_generator: yield data async def ollama_stream_wrapper(self, original_generator, citations): yield f"{json.dumps({'citations': citations})}\n" async for data in original_generator: yield data app.add_middleware(ChatCompletionMiddleware) def filter_pipeline(payload, user): user = {"id": user.id, "name": user.name, "role": user.role} model_id = payload["model"] filters = [ model for model in app.state.MODELS.values() if "pipeline" in model and "type" in model["pipeline"] and model["pipeline"]["type"] == "filter" and ( model["pipeline"]["pipelines"] == ["*"] or any( model_id == target_model_id for target_model_id in model["pipeline"]["pipelines"] ) ) ] sorted_filters = sorted(filters, key=lambda x: x["pipeline"]["priority"]) model = app.state.MODELS[model_id] if "pipeline" in model: sorted_filters.append(model) for filter in sorted_filters: r = None try: urlIdx = filter["urlIdx"] url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] if key != "": headers = {"Authorization": f"Bearer {key}"} r = requests.post( f"{url}/{filter['id']}/filter/inlet", headers=headers, json={ "user": user, "body": payload, }, ) r.raise_for_status() payload = r.json() except Exception as e: # Handle connection error here print(f"Connection error: {e}") if r is not None: try: res = r.json() except: pass if "detail" in res: raise Exception(r.status_code, res["detail"]) else: pass if "pipeline" not in app.state.MODELS[model_id]: if "chat_id" in payload: del payload["chat_id"] if "title" in payload: del payload["title"] if "task" in payload: del payload["task"] return payload class PipelineMiddleware(BaseHTTPMiddleware): async def dispatch(self, request: Request, call_next): if request.method == "POST" and ( "/ollama/api/chat" in request.url.path or "/chat/completions" in request.url.path ): log.debug(f"request.url.path: {request.url.path}") # Read the original request body body = await request.body() # Decode body to string body_str = body.decode("utf-8") # Parse string to JSON data = json.loads(body_str) if body_str else {} user = get_current_user( get_http_authorization_cred(request.headers.get("Authorization")) ) try: data = filter_pipeline(data, user) except Exception as e: return JSONResponse( status_code=e.args[0], content={"detail": e.args[1]}, ) modified_body_bytes = json.dumps(data).encode("utf-8") # Replace the request body with the modified one request._body = modified_body_bytes # Set custom header to ensure content-length matches new body length request.headers.__dict__["_list"] = [ (b"content-length", str(len(modified_body_bytes)).encode("utf-8")), *[ (k, v) for k, v in request.headers.raw if k.lower() != b"content-length" ], ] response = await call_next(request) return response async def _receive(self, body: bytes): return {"type": "http.request", "body": body, "more_body": False} app.add_middleware(PipelineMiddleware) app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) @app.middleware("http") async def check_url(request: Request, call_next): if len(app.state.MODELS) == 0: await get_all_models() else: pass start_time = int(time.time()) response = await call_next(request) process_time = int(time.time()) - start_time response.headers["X-Process-Time"] = str(process_time) return response @app.middleware("http") async def update_embedding_function(request: Request, call_next): response = await call_next(request) if "/embedding/update" in request.url.path: webui_app.state.EMBEDDING_FUNCTION = rag_app.state.EMBEDDING_FUNCTION return response app.mount("/ws", socket_app) app.mount("/ollama", ollama_app) app.mount("/openai", openai_app) app.mount("/images/api/v1", images_app) app.mount("/audio/api/v1", audio_app) app.mount("/rag/api/v1", rag_app) app.mount("/api/v1", webui_app) webui_app.state.EMBEDDING_FUNCTION = rag_app.state.EMBEDDING_FUNCTION async def get_all_models(): openai_models = [] ollama_models = [] if app.state.config.ENABLE_OPENAI_API: openai_models = await get_openai_models() openai_models = openai_models["data"] if app.state.config.ENABLE_OLLAMA_API: ollama_models = await get_ollama_models() ollama_models = [ { "id": model["model"], "name": model["name"], "object": "model", "created": int(time.time()), "owned_by": "ollama", "ollama": model, } for model in ollama_models["models"] ] models = openai_models + ollama_models custom_models = Models.get_all_models() for custom_model in custom_models: if custom_model.base_model_id == None: for model in models: if ( custom_model.id == model["id"] or custom_model.id == model["id"].split(":")[0] ): model["name"] = custom_model.name model["info"] = custom_model.model_dump() else: owned_by = "openai" for model in models: if ( custom_model.base_model_id == model["id"] or custom_model.base_model_id == model["id"].split(":")[0] ): owned_by = model["owned_by"] break models.append( { "id": custom_model.id, "name": custom_model.name, "object": "model", "created": custom_model.created_at, "owned_by": owned_by, "info": custom_model.model_dump(), "preset": True, } ) app.state.MODELS = {model["id"]: model for model in models} webui_app.state.MODELS = app.state.MODELS return models @app.get("/api/models") async def get_models(user=Depends(get_verified_user)): models = await get_all_models() # Filter out filter pipelines models = [ model for model in models if "pipeline" not in model or model["pipeline"].get("type", None) != "filter" ] if app.state.config.ENABLE_MODEL_FILTER: if user.role == "user": models = list( filter( lambda model: model["id"] in app.state.config.MODEL_FILTER_LIST, models, ) ) return {"data": models} return {"data": models} @app.get("/api/task/config") async def get_task_config(user=Depends(get_verified_user)): return { "TASK_MODEL": app.state.config.TASK_MODEL, "TASK_MODEL_EXTERNAL": app.state.config.TASK_MODEL_EXTERNAL, "TITLE_GENERATION_PROMPT_TEMPLATE": app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE, "SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE": app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE, "SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD": app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD, "TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE": app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE, } class TaskConfigForm(BaseModel): TASK_MODEL: Optional[str] TASK_MODEL_EXTERNAL: Optional[str] TITLE_GENERATION_PROMPT_TEMPLATE: str SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE: str SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD: int TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE: str @app.post("/api/task/config/update") async def update_task_config(form_data: TaskConfigForm, user=Depends(get_admin_user)): app.state.config.TASK_MODEL = form_data.TASK_MODEL app.state.config.TASK_MODEL_EXTERNAL = form_data.TASK_MODEL_EXTERNAL app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE = ( form_data.TITLE_GENERATION_PROMPT_TEMPLATE ) app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE = ( form_data.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE ) app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD = ( form_data.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD ) app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE = ( form_data.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE ) return { "TASK_MODEL": app.state.config.TASK_MODEL, "TASK_MODEL_EXTERNAL": app.state.config.TASK_MODEL_EXTERNAL, "TITLE_GENERATION_PROMPT_TEMPLATE": app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE, "SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE": app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE, "SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD": app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD, "TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE": app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE, } @app.post("/api/task/title/completions") async def generate_title(form_data: dict, user=Depends(get_verified_user)): print("generate_title") model_id = form_data["model"] if model_id not in app.state.MODELS: raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail="Model not found", ) # Check if the user has a custom task model # If the user has a custom task model, use that model if app.state.MODELS[model_id]["owned_by"] == "ollama": if app.state.config.TASK_MODEL: task_model_id = app.state.config.TASK_MODEL if task_model_id in app.state.MODELS: model_id = task_model_id else: if app.state.config.TASK_MODEL_EXTERNAL: task_model_id = app.state.config.TASK_MODEL_EXTERNAL if task_model_id in app.state.MODELS: model_id = task_model_id print(model_id) model = app.state.MODELS[model_id] template = app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE content = title_generation_template( template, form_data["prompt"], { "name": user.name, "location": user.info.get("location") if user.info else None, }, ) payload = { "model": model_id, "messages": [{"role": "user", "content": content}], "stream": False, "max_tokens": 50, "chat_id": form_data.get("chat_id", None), "title": True, } log.debug(payload) try: payload = filter_pipeline(payload, user) except Exception as e: return JSONResponse( status_code=e.args[0], content={"detail": e.args[1]}, ) if model["owned_by"] == "ollama": return await generate_ollama_chat_completion(payload, user=user) else: return await generate_openai_chat_completion(payload, user=user) @app.post("/api/task/query/completions") async def generate_search_query(form_data: dict, user=Depends(get_verified_user)): print("generate_search_query") if len(form_data["prompt"]) < app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD: raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=f"Skip search query generation for short prompts (< {app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD} characters)", ) model_id = form_data["model"] if model_id not in app.state.MODELS: raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail="Model not found", ) # Check if the user has a custom task model # If the user has a custom task model, use that model if app.state.MODELS[model_id]["owned_by"] == "ollama": if app.state.config.TASK_MODEL: task_model_id = app.state.config.TASK_MODEL if task_model_id in app.state.MODELS: model_id = task_model_id else: if app.state.config.TASK_MODEL_EXTERNAL: task_model_id = app.state.config.TASK_MODEL_EXTERNAL if task_model_id in app.state.MODELS: model_id = task_model_id print(model_id) model = app.state.MODELS[model_id] template = app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE content = search_query_generation_template( template, form_data["prompt"], {"name": user.name} ) payload = { "model": model_id, "messages": [{"role": "user", "content": content}], "stream": False, "max_tokens": 30, "task": True, } print(payload) try: payload = filter_pipeline(payload, user) except Exception as e: return JSONResponse( status_code=e.args[0], content={"detail": e.args[1]}, ) if model["owned_by"] == "ollama": return await generate_ollama_chat_completion(payload, user=user) else: return await generate_openai_chat_completion(payload, user=user) @app.post("/api/task/emoji/completions") async def generate_emoji(form_data: dict, user=Depends(get_verified_user)): print("generate_emoji") model_id = form_data["model"] if model_id not in app.state.MODELS: raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail="Model not found", ) # Check if the user has a custom task model # If the user has a custom task model, use that model if app.state.MODELS[model_id]["owned_by"] == "ollama": if app.state.config.TASK_MODEL: task_model_id = app.state.config.TASK_MODEL if task_model_id in app.state.MODELS: model_id = task_model_id else: if app.state.config.TASK_MODEL_EXTERNAL: task_model_id = app.state.config.TASK_MODEL_EXTERNAL if task_model_id in app.state.MODELS: model_id = task_model_id print(model_id) model = app.state.MODELS[model_id] template = ''' Your task is to reflect the speaker's likely facial expression through a fitting emoji. Interpret emotions from the message and reflect their facial expression using fitting, diverse emojis (e.g., 😊, 😢, 😡, 😱). Message: """{{prompt}}""" ''' content = title_generation_template( template, form_data["prompt"], { "name": user.name, "location": user.info.get("location") if user.info else None, }, ) payload = { "model": model_id, "messages": [{"role": "user", "content": content}], "stream": False, "max_tokens": 4, "chat_id": form_data.get("chat_id", None), "task": True, } log.debug(payload) try: payload = filter_pipeline(payload, user) except Exception as e: return JSONResponse( status_code=e.args[0], content={"detail": e.args[1]}, ) if model["owned_by"] == "ollama": return await generate_ollama_chat_completion(payload, user=user) else: return await generate_openai_chat_completion(payload, user=user) @app.post("/api/task/tools/completions") async def get_tools_function_calling(form_data: dict, user=Depends(get_verified_user)): print("get_tools_function_calling") model_id = form_data["model"] if model_id not in app.state.MODELS: raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail="Model not found", ) # Check if the user has a custom task model # If the user has a custom task model, use that model if app.state.MODELS[model_id]["owned_by"] == "ollama": if app.state.config.TASK_MODEL: task_model_id = app.state.config.TASK_MODEL if task_model_id in app.state.MODELS: model_id = task_model_id else: if app.state.config.TASK_MODEL_EXTERNAL: task_model_id = app.state.config.TASK_MODEL_EXTERNAL if task_model_id in app.state.MODELS: model_id = task_model_id print(model_id) template = app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE try: context, file_handler = await get_function_call_response( form_data["messages"], form_data.get("files", []), form_data["tool_id"], template, model_id, user, ) return context except Exception as e: return JSONResponse( status_code=e.args[0], content={"detail": e.args[1]}, ) @app.post("/api/chat/completions") async def generate_chat_completions(form_data: dict, user=Depends(get_verified_user)): model_id = form_data["model"] if model_id not in app.state.MODELS: raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail="Model not found", ) model = app.state.MODELS[model_id] print(model) if model["owned_by"] == "ollama": return await generate_ollama_chat_completion(form_data, user=user) else: return await generate_openai_chat_completion(form_data, user=user) @app.post("/api/chat/completed") async def chat_completed(form_data: dict, user=Depends(get_verified_user)): data = form_data model_id = data["model"] filters = [ model for model in app.state.MODELS.values() if "pipeline" in model and "type" in model["pipeline"] and model["pipeline"]["type"] == "filter" and ( model["pipeline"]["pipelines"] == ["*"] or any( model_id == target_model_id for target_model_id in model["pipeline"]["pipelines"] ) ) ] sorted_filters = sorted(filters, key=lambda x: x["pipeline"]["priority"]) print(model_id) if model_id in app.state.MODELS: model = app.state.MODELS[model_id] if "pipeline" in model: sorted_filters = [model] + sorted_filters for filter in sorted_filters: r = None try: urlIdx = filter["urlIdx"] url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] if key != "": headers = {"Authorization": f"Bearer {key}"} r = requests.post( f"{url}/{filter['id']}/filter/outlet", headers=headers, json={ "user": {"id": user.id, "name": user.name, "role": user.role}, "body": data, }, ) r.raise_for_status() data = r.json() except Exception as e: # Handle connection error here print(f"Connection error: {e}") if r is not None: try: res = r.json() if "detail" in res: return JSONResponse( status_code=r.status_code, content=res, ) except: pass else: pass return data @app.get("/api/pipelines/list") async def get_pipelines_list(user=Depends(get_admin_user)): responses = await get_openai_models(raw=True) print(responses) urlIdxs = [ idx for idx, response in enumerate(responses) if response != None and "pipelines" in response ] return { "data": [ { "url": openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx], "idx": urlIdx, } for urlIdx in urlIdxs ] } @app.post("/api/pipelines/upload") async def upload_pipeline( urlIdx: int = Form(...), file: UploadFile = File(...), user=Depends(get_admin_user) ): print("upload_pipeline", urlIdx, file.filename) # Check if the uploaded file is a python file if not file.filename.endswith(".py"): raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail="Only Python (.py) files are allowed.", ) upload_folder = f"{CACHE_DIR}/pipelines" os.makedirs(upload_folder, exist_ok=True) file_path = os.path.join(upload_folder, file.filename) try: # Save the uploaded file with open(file_path, "wb") as buffer: shutil.copyfileobj(file.file, buffer) url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] headers = {"Authorization": f"Bearer {key}"} with open(file_path, "rb") as f: files = {"file": f} r = requests.post(f"{url}/pipelines/upload", headers=headers, files=files) r.raise_for_status() data = r.json() return {**data} except Exception as e: # Handle connection error here print(f"Connection error: {e}") detail = "Pipeline not found" if r is not None: try: res = r.json() if "detail" in res: detail = res["detail"] except: pass raise HTTPException( status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), detail=detail, ) finally: # Ensure the file is deleted after the upload is completed or on failure if os.path.exists(file_path): os.remove(file_path) class AddPipelineForm(BaseModel): url: str urlIdx: int @app.post("/api/pipelines/add") async def add_pipeline(form_data: AddPipelineForm, user=Depends(get_admin_user)): r = None try: urlIdx = form_data.urlIdx url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] headers = {"Authorization": f"Bearer {key}"} r = requests.post( f"{url}/pipelines/add", headers=headers, json={"url": form_data.url} ) r.raise_for_status() data = r.json() return {**data} except Exception as e: # Handle connection error here print(f"Connection error: {e}") detail = "Pipeline not found" if r is not None: try: res = r.json() if "detail" in res: detail = res["detail"] except: pass raise HTTPException( status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), detail=detail, ) class DeletePipelineForm(BaseModel): id: str urlIdx: int @app.delete("/api/pipelines/delete") async def delete_pipeline(form_data: DeletePipelineForm, user=Depends(get_admin_user)): r = None try: urlIdx = form_data.urlIdx url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] headers = {"Authorization": f"Bearer {key}"} r = requests.delete( f"{url}/pipelines/delete", headers=headers, json={"id": form_data.id} ) r.raise_for_status() data = r.json() return {**data} except Exception as e: # Handle connection error here print(f"Connection error: {e}") detail = "Pipeline not found" if r is not None: try: res = r.json() if "detail" in res: detail = res["detail"] except: pass raise HTTPException( status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), detail=detail, ) @app.get("/api/pipelines") async def get_pipelines(urlIdx: Optional[int] = None, user=Depends(get_admin_user)): r = None try: urlIdx url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] headers = {"Authorization": f"Bearer {key}"} r = requests.get(f"{url}/pipelines", headers=headers) r.raise_for_status() data = r.json() return {**data} except Exception as e: # Handle connection error here print(f"Connection error: {e}") detail = "Pipeline not found" if r is not None: try: res = r.json() if "detail" in res: detail = res["detail"] except: pass raise HTTPException( status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), detail=detail, ) @app.get("/api/pipelines/{pipeline_id}/valves") async def get_pipeline_valves( urlIdx: Optional[int], pipeline_id: str, user=Depends(get_admin_user) ): models = await get_all_models() r = None try: url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] headers = {"Authorization": f"Bearer {key}"} r = requests.get(f"{url}/{pipeline_id}/valves", headers=headers) r.raise_for_status() data = r.json() return {**data} except Exception as e: # Handle connection error here print(f"Connection error: {e}") detail = "Pipeline not found" if r is not None: try: res = r.json() if "detail" in res: detail = res["detail"] except: pass raise HTTPException( status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), detail=detail, ) @app.get("/api/pipelines/{pipeline_id}/valves/spec") async def get_pipeline_valves_spec( urlIdx: Optional[int], pipeline_id: str, user=Depends(get_admin_user) ): models = await get_all_models() r = None try: url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] headers = {"Authorization": f"Bearer {key}"} r = requests.get(f"{url}/{pipeline_id}/valves/spec", headers=headers) r.raise_for_status() data = r.json() return {**data} except Exception as e: # Handle connection error here print(f"Connection error: {e}") detail = "Pipeline not found" if r is not None: try: res = r.json() if "detail" in res: detail = res["detail"] except: pass raise HTTPException( status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), detail=detail, ) @app.post("/api/pipelines/{pipeline_id}/valves/update") async def update_pipeline_valves( urlIdx: Optional[int], pipeline_id: str, form_data: dict, user=Depends(get_admin_user), ): models = await get_all_models() r = None try: url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] headers = {"Authorization": f"Bearer {key}"} r = requests.post( f"{url}/{pipeline_id}/valves/update", headers=headers, json={**form_data}, ) r.raise_for_status() data = r.json() return {**data} except Exception as e: # Handle connection error here print(f"Connection error: {e}") detail = "Pipeline not found" if r is not None: try: res = r.json() if "detail" in res: detail = res["detail"] except: pass raise HTTPException( status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), detail=detail, ) @app.get("/api/config") async def get_app_config(): # Checking and Handling the Absence of 'ui' in CONFIG_DATA default_locale = "en-US" if "ui" in CONFIG_DATA: default_locale = CONFIG_DATA["ui"].get("default_locale", "en-US") # The Rest of the Function Now Uses the Variables Defined Above return { "status": True, "name": WEBUI_NAME, "version": VERSION, "default_locale": default_locale, "default_models": webui_app.state.config.DEFAULT_MODELS, "default_prompt_suggestions": webui_app.state.config.DEFAULT_PROMPT_SUGGESTIONS, "features": { "auth": WEBUI_AUTH, "auth_trusted_header": bool(webui_app.state.AUTH_TRUSTED_EMAIL_HEADER), "enable_signup": webui_app.state.config.ENABLE_SIGNUP, "enable_web_search": rag_app.state.config.ENABLE_RAG_WEB_SEARCH, "enable_image_generation": images_app.state.config.ENABLED, "enable_community_sharing": webui_app.state.config.ENABLE_COMMUNITY_SHARING, "enable_admin_export": ENABLE_ADMIN_EXPORT, }, "audio": { "tts": { "engine": audio_app.state.config.TTS_ENGINE, "voice": audio_app.state.config.TTS_VOICE, }, "stt": { "engine": audio_app.state.config.STT_ENGINE, }, }, } @app.get("/api/config/model/filter") async def get_model_filter_config(user=Depends(get_admin_user)): return { "enabled": app.state.config.ENABLE_MODEL_FILTER, "models": app.state.config.MODEL_FILTER_LIST, } class ModelFilterConfigForm(BaseModel): enabled: bool models: List[str] @app.post("/api/config/model/filter") async def update_model_filter_config( form_data: ModelFilterConfigForm, user=Depends(get_admin_user) ): app.state.config.ENABLE_MODEL_FILTER = form_data.enabled app.state.config.MODEL_FILTER_LIST = form_data.models return { "enabled": app.state.config.ENABLE_MODEL_FILTER, "models": app.state.config.MODEL_FILTER_LIST, } @app.get("/api/webhook") async def get_webhook_url(user=Depends(get_admin_user)): return { "url": app.state.config.WEBHOOK_URL, } class UrlForm(BaseModel): url: str @app.post("/api/webhook") async def update_webhook_url(form_data: UrlForm, user=Depends(get_admin_user)): app.state.config.WEBHOOK_URL = form_data.url webui_app.state.WEBHOOK_URL = app.state.config.WEBHOOK_URL return {"url": app.state.config.WEBHOOK_URL} @app.get("/api/version") async def get_app_config(): return { "version": VERSION, } @app.get("/api/changelog") async def get_app_changelog(): return {key: CHANGELOG[key] for idx, key in enumerate(CHANGELOG) if idx < 5} @app.get("/api/version/updates") async def get_app_latest_release_version(): try: async with aiohttp.ClientSession(trust_env=True) as session: async with session.get( "https://api.github.com/repos/open-webui/open-webui/releases/latest" ) as response: response.raise_for_status() data = await response.json() latest_version = data["tag_name"] return {"current": VERSION, "latest": latest_version[1:]} except aiohttp.ClientError as e: raise HTTPException( status_code=status.HTTP_503_SERVICE_UNAVAILABLE, detail=ERROR_MESSAGES.RATE_LIMIT_EXCEEDED, ) @app.get("/manifest.json") async def get_manifest_json(): return { "name": WEBUI_NAME, "short_name": WEBUI_NAME, "start_url": "/", "display": "standalone", "background_color": "#343541", "theme_color": "#343541", "orientation": "portrait-primary", "icons": [{"src": "/static/logo.png", "type": "image/png", "sizes": "500x500"}], } @app.get("/opensearch.xml") async def get_opensearch_xml(): xml_content = rf""" {WEBUI_NAME} Search {WEBUI_NAME} UTF-8 {WEBUI_URL}/favicon.png {WEBUI_URL} """ return Response(content=xml_content, media_type="application/xml") @app.get("/health") async def healthcheck(): return {"status": True} app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static") app.mount("/cache", StaticFiles(directory=CACHE_DIR), name="cache") if os.path.exists(FRONTEND_BUILD_DIR): mimetypes.add_type("text/javascript", ".js") app.mount( "/", SPAStaticFiles(directory=FRONTEND_BUILD_DIR, html=True), name="spa-static-files", ) else: log.warning( f"Frontend build directory not found at '{FRONTEND_BUILD_DIR}'. Serving API only." )