# syntax=docker/dockerfile:1 ARG CUDA_VERSION=12.3.2 ######## WebUI frontend ######## FROM node:21-alpine3.19 as build WORKDIR /app COPY package.json package-lock.json ./ RUN npm ci COPY . . RUN npm run build ######## CPU-only WebUI backend ######## # To support both CPU and GPU backend, we need to keep the ability to build the CPU-only image. #FROM python:3.11-slim-bookworm as base FROM --platform=linux/amd64 cgr.dev/chainguard/python:latest-dev AS cpu-build-amd64 #FROM --platform=linux/amd64 ubuntu:22.04 AS cpu-builder-amd64 #FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu-build-amd64 #RUN OPENWEBUI_CPU_TARGET="cpu" sh gen_linux.sh #FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx-build-amd64 #RUN OPENWEBUI_CPU_TARGET="cpu_avx" sh gen_linux.sh #FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx2-build-amd64 #RUN OPENWEBUI_CPU_TARGET="cpu_avx2" sh gen_linux.sh ######## CUDA WebUI backend ######## #FROM --platform=linux/amd64 nvidia/cuda:"$CUDA_VERSION"-devel-ubuntu22.04 AS cuda-build-amd64 #FROM --platform=linux/amd64 cgr.dev/chainguard/pytorch-cuda12:latest AS cuda-build-amd64 # fails with python requirements conflicts # Set environment variables for NVIDIA Container Toolkit ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 \ NVIDIA_DRIVER_CAPABILITIES=all \ NVIDIA_VISIBLE_DEVICES=all ENV ENV=prod \ PORT=8080 ## Base URL Config ## ENV OLLAMA_BASE_URL="/ollama" \ OPENAI_API_BASE_URL="" ## API Key and Security Config ## ENV OPENAI_API_KEY="" \ WEBUI_SECRET_KEY="" \ SCARF_NO_ANALYTICS=true \ DO_NOT_TRACK=true ######## Preloaded models ######## # whisper TTS Settings ENV WHISPER_MODEL="base" \ WHISPER_MODEL_DIR="/app/backend/data/cache/whisper/models" # RAG Embedding Model Settings # any sentence transformer model; models to use can be found at https://huggingface.co/models?library=sentence-transformers # Leaderboard: https://huggingface.co/spaces/mteb/leaderboard # for better performance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB) # IMPORTANT: If you change the default model (all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them. ENV RAG_EMBEDDING_MODEL="all-MiniLM-L6-v2" \ # device type for whisper tts and embedding models - "cpu" (default), "cuda" (NVIDIA GPU and CUDA required), or "mps" (apple silicon) - choosing this right can lead to better performance RAG_EMBEDDING_MODEL_DEVICE_TYPE="cuda" \ RAG_EMBEDDING_MODEL_DIR="/app/backend/data/cache/embedding/models" \ SENTENCE_TRANSFORMERS_HOME=$RAG_EMBEDDING_MODEL_DIR ######## Preloaded models ######## WORKDIR /app/backend # Install Python & dependencies in the container # Used for Debian #RUN apt-get update && \ # apt-get install -y --no-install-recommends python3.11 python3-pip ffmpeg libsm6 libxext6 pandoc netcat-openbsd && \ # rm -rf /var/lib/apt/lists/* # Used for Redhat #RUN apk update && \ # apk add --no-install-recommends python3.11 python3-pip ffmpeg libsm6 libxext6 pandoc netcat-openbsd && \ # apk del /var/cache/apk/*.tbz2 # Install only the dependencies in the container, python will come from the base image used RUN apk update && \ apk add --no-install-recommends ffmpeg libsm6 libxext6 pandoc netcat-openbsd && \ apk del /var/cache/apk/*.tbz2 COPY ./backend/requirements.txt ./requirements.txt RUN pip3 install torch torchvision torchaudio --no-cache-dir && \ pip3 install -r requirements.txt --no-cache-dir # copy built frontend files COPY --from=build /app/build /app/build COPY --from=build /app/CHANGELOG.md /app/CHANGELOG.md COPY --from=build /app/package.json /app/package.json # copy backend files COPY ./backend . EXPOSE 8080 CMD [ "bash", "start.sh"]