from fastapi import ( FastAPI, Depends, HTTPException, status, UploadFile, File, Form, ) from fastapi.middleware.cors import CORSMiddleware import os, shutil, logging, re from pathlib import Path from typing import List from chromadb.utils import embedding_functions from chromadb.utils.batch_utils import create_batches from langchain_community.document_loaders import ( WebBaseLoader, TextLoader, PyPDFLoader, CSVLoader, BSHTMLLoader, Docx2txtLoader, UnstructuredEPubLoader, UnstructuredWordDocumentLoader, UnstructuredMarkdownLoader, UnstructuredXMLLoader, UnstructuredRSTLoader, UnstructuredExcelLoader, ) from langchain.text_splitter import RecursiveCharacterTextSplitter from pydantic import BaseModel from typing import Optional import mimetypes import uuid import json from apps.ollama.main import generate_ollama_embeddings, GenerateEmbeddingsForm from apps.web.models.documents import ( Documents, DocumentForm, DocumentResponse, ) from apps.rag.utils import ( query_doc, query_embeddings_doc, query_collection, query_embeddings_collection, get_embedding_model_path, generate_openai_embeddings, ) from utils.misc import ( calculate_sha256, calculate_sha256_string, sanitize_filename, extract_folders_after_data_docs, ) from utils.utils import get_current_user, get_admin_user from config import ( SRC_LOG_LEVELS, UPLOAD_DIR, DOCS_DIR, RAG_EMBEDDING_ENGINE, RAG_EMBEDDING_MODEL, RAG_EMBEDDING_MODEL_AUTO_UPDATE, DEVICE_TYPE, CHROMA_CLIENT, CHUNK_SIZE, CHUNK_OVERLAP, RAG_TEMPLATE, ) from constants import ERROR_MESSAGES log = logging.getLogger(__name__) log.setLevel(SRC_LOG_LEVELS["RAG"]) app = FastAPI() app.state.TOP_K = 4 app.state.CHUNK_SIZE = CHUNK_SIZE app.state.CHUNK_OVERLAP = CHUNK_OVERLAP app.state.RAG_EMBEDDING_ENGINE = RAG_EMBEDDING_ENGINE app.state.RAG_EMBEDDING_MODEL = RAG_EMBEDDING_MODEL app.state.RAG_TEMPLATE = RAG_TEMPLATE app.state.RAG_OPENAI_API_BASE_URL = "https://api.openai.com" app.state.RAG_OPENAI_API_KEY = "" app.state.PDF_EXTRACT_IMAGES = False app.state.sentence_transformer_ef = ( embedding_functions.SentenceTransformerEmbeddingFunction( model_name=get_embedding_model_path( app.state.RAG_EMBEDDING_MODEL, RAG_EMBEDDING_MODEL_AUTO_UPDATE ), device=DEVICE_TYPE, ) ) origins = ["*"] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) class CollectionNameForm(BaseModel): collection_name: Optional[str] = "test" class StoreWebForm(CollectionNameForm): url: str @app.get("/") async def get_status(): return { "status": True, "chunk_size": app.state.CHUNK_SIZE, "chunk_overlap": app.state.CHUNK_OVERLAP, "template": app.state.RAG_TEMPLATE, "embedding_engine": app.state.RAG_EMBEDDING_ENGINE, "embedding_model": app.state.RAG_EMBEDDING_MODEL, } @app.get("/embedding") async def get_embedding_config(user=Depends(get_admin_user)): return { "status": True, "embedding_engine": app.state.RAG_EMBEDDING_ENGINE, "embedding_model": app.state.RAG_EMBEDDING_MODEL, "openai_config": { "url": app.state.RAG_OPENAI_API_BASE_URL, "key": app.state.RAG_OPENAI_API_KEY, }, } class OpenAIConfigForm(BaseModel): url: str key: str class EmbeddingModelUpdateForm(BaseModel): openai_config: Optional[OpenAIConfigForm] = None embedding_engine: str embedding_model: str @app.post("/embedding/update") async def update_embedding_config( form_data: EmbeddingModelUpdateForm, user=Depends(get_admin_user) ): log.info( f"Updating embedding model: {app.state.RAG_EMBEDDING_MODEL} to {form_data.embedding_model}" ) try: app.state.RAG_EMBEDDING_ENGINE = form_data.embedding_engine if app.state.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]: app.state.RAG_EMBEDDING_MODEL = form_data.embedding_model app.state.sentence_transformer_ef = None if form_data.openai_config != None: app.state.RAG_OPENAI_API_BASE_URL = form_data.openai_config.url app.state.RAG_OPENAI_API_KEY = form_data.openai_config.key else: sentence_transformer_ef = ( embedding_functions.SentenceTransformerEmbeddingFunction( model_name=get_embedding_model_path( form_data.embedding_model, True ), device=DEVICE_TYPE, ) ) app.state.RAG_EMBEDDING_MODEL = form_data.embedding_model app.state.sentence_transformer_ef = sentence_transformer_ef return { "status": True, "embedding_engine": app.state.RAG_EMBEDDING_ENGINE, "embedding_model": app.state.RAG_EMBEDDING_MODEL, "openai_config": { "url": app.state.RAG_OPENAI_API_BASE_URL, "key": app.state.RAG_OPENAI_API_KEY, }, } except Exception as e: log.exception(f"Problem updating embedding model: {e}") raise HTTPException( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=ERROR_MESSAGES.DEFAULT(e), ) @app.get("/config") async def get_rag_config(user=Depends(get_admin_user)): return { "status": True, "pdf_extract_images": app.state.PDF_EXTRACT_IMAGES, "chunk": { "chunk_size": app.state.CHUNK_SIZE, "chunk_overlap": app.state.CHUNK_OVERLAP, }, } class ChunkParamUpdateForm(BaseModel): chunk_size: int chunk_overlap: int class ConfigUpdateForm(BaseModel): pdf_extract_images: bool chunk: ChunkParamUpdateForm @app.post("/config/update") async def update_rag_config(form_data: ConfigUpdateForm, user=Depends(get_admin_user)): app.state.PDF_EXTRACT_IMAGES = form_data.pdf_extract_images app.state.CHUNK_SIZE = form_data.chunk.chunk_size app.state.CHUNK_OVERLAP = form_data.chunk.chunk_overlap return { "status": True, "pdf_extract_images": app.state.PDF_EXTRACT_IMAGES, "chunk": { "chunk_size": app.state.CHUNK_SIZE, "chunk_overlap": app.state.CHUNK_OVERLAP, }, } @app.get("/template") async def get_rag_template(user=Depends(get_current_user)): return { "status": True, "template": app.state.RAG_TEMPLATE, } @app.get("/query/settings") async def get_query_settings(user=Depends(get_admin_user)): return { "status": True, "template": app.state.RAG_TEMPLATE, "k": app.state.TOP_K, } class QuerySettingsForm(BaseModel): k: Optional[int] = None template: Optional[str] = None @app.post("/query/settings/update") async def update_query_settings( form_data: QuerySettingsForm, user=Depends(get_admin_user) ): app.state.RAG_TEMPLATE = form_data.template if form_data.template else RAG_TEMPLATE app.state.TOP_K = form_data.k if form_data.k else 4 return {"status": True, "template": app.state.RAG_TEMPLATE} class QueryDocForm(BaseModel): collection_name: str query: str k: Optional[int] = None @app.post("/query/doc") def query_doc_handler( form_data: QueryDocForm, user=Depends(get_current_user), ): try: if app.state.RAG_EMBEDDING_ENGINE == "": return query_doc( collection_name=form_data.collection_name, query=form_data.query, k=form_data.k if form_data.k else app.state.TOP_K, embedding_function=app.state.sentence_transformer_ef, ) else: if app.state.RAG_EMBEDDING_ENGINE == "ollama": query_embeddings = generate_ollama_embeddings( GenerateEmbeddingsForm( **{ "model": app.state.RAG_EMBEDDING_MODEL, "prompt": form_data.query, } ) ) elif app.state.RAG_EMBEDDING_ENGINE == "openai": query_embeddings = generate_openai_embeddings( model=app.state.RAG_EMBEDDING_MODEL, text=form_data.query, key=app.state.RAG_OPENAI_API_KEY, url=app.state.RAG_OPENAI_API_BASE_URL, ) return query_embeddings_doc( collection_name=form_data.collection_name, query_embeddings=query_embeddings, k=form_data.k if form_data.k else app.state.TOP_K, ) except Exception as e: log.exception(e) raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=ERROR_MESSAGES.DEFAULT(e), ) class QueryCollectionsForm(BaseModel): collection_names: List[str] query: str k: Optional[int] = None @app.post("/query/collection") def query_collection_handler( form_data: QueryCollectionsForm, user=Depends(get_current_user), ): try: if app.state.RAG_EMBEDDING_ENGINE == "": return query_collection( collection_names=form_data.collection_names, query=form_data.query, k=form_data.k if form_data.k else app.state.TOP_K, embedding_function=app.state.sentence_transformer_ef, ) else: if app.state.RAG_EMBEDDING_ENGINE == "ollama": query_embeddings = generate_ollama_embeddings( GenerateEmbeddingsForm( **{ "model": app.state.RAG_EMBEDDING_MODEL, "prompt": form_data.query, } ) ) elif app.state.RAG_EMBEDDING_ENGINE == "openai": query_embeddings = generate_openai_embeddings( model=app.state.RAG_EMBEDDING_MODEL, text=form_data.query, key=app.state.RAG_OPENAI_API_KEY, url=app.state.RAG_OPENAI_API_BASE_URL, ) return query_embeddings_collection( collection_names=form_data.collection_names, query_embeddings=query_embeddings, k=form_data.k if form_data.k else app.state.TOP_K, ) except Exception as e: log.exception(e) raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=ERROR_MESSAGES.DEFAULT(e), ) @app.post("/web") def store_web(form_data: StoreWebForm, user=Depends(get_current_user)): # "https://www.gutenberg.org/files/1727/1727-h/1727-h.htm" try: loader = WebBaseLoader(form_data.url) data = loader.load() collection_name = form_data.collection_name if collection_name == "": collection_name = calculate_sha256_string(form_data.url)[:63] store_data_in_vector_db(data, collection_name, overwrite=True) return { "status": True, "collection_name": collection_name, "filename": form_data.url, } except Exception as e: log.exception(e) raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=ERROR_MESSAGES.DEFAULT(e), ) def store_data_in_vector_db(data, collection_name, overwrite: bool = False) -> bool: text_splitter = RecursiveCharacterTextSplitter( chunk_size=app.state.CHUNK_SIZE, chunk_overlap=app.state.CHUNK_OVERLAP, add_start_index=True, ) docs = text_splitter.split_documents(data) if len(docs) > 0: log.info(f"store_data_in_vector_db {docs}") return store_docs_in_vector_db(docs, collection_name, overwrite), None else: raise ValueError(ERROR_MESSAGES.EMPTY_CONTENT) def store_text_in_vector_db( text, metadata, collection_name, overwrite: bool = False ) -> bool: text_splitter = RecursiveCharacterTextSplitter( chunk_size=app.state.CHUNK_SIZE, chunk_overlap=app.state.CHUNK_OVERLAP, add_start_index=True, ) docs = text_splitter.create_documents([text], metadatas=[metadata]) return store_docs_in_vector_db(docs, collection_name, overwrite) def store_docs_in_vector_db(docs, collection_name, overwrite: bool = False) -> bool: log.info(f"store_docs_in_vector_db {docs} {collection_name}") texts = [doc.page_content for doc in docs] metadatas = [doc.metadata for doc in docs] try: if overwrite: for collection in CHROMA_CLIENT.list_collections(): if collection_name == collection.name: log.info(f"deleting existing collection {collection_name}") CHROMA_CLIENT.delete_collection(name=collection_name) if app.state.RAG_EMBEDDING_ENGINE == "": collection = CHROMA_CLIENT.create_collection( name=collection_name, embedding_function=app.state.sentence_transformer_ef, ) for batch in create_batches( api=CHROMA_CLIENT, ids=[str(uuid.uuid1()) for _ in texts], metadatas=metadatas, documents=texts, ): collection.add(*batch) else: collection = CHROMA_CLIENT.create_collection(name=collection_name) if app.state.RAG_EMBEDDING_ENGINE == "ollama": embeddings = [ generate_ollama_embeddings( GenerateEmbeddingsForm( **{"model": app.state.RAG_EMBEDDING_MODEL, "prompt": text} ) ) for text in texts ] elif app.state.RAG_EMBEDDING_ENGINE == "openai": embeddings = [ generate_openai_embeddings( model=app.state.RAG_EMBEDDING_MODEL, text=text, key=app.state.RAG_OPENAI_API_KEY, url=app.state.RAG_OPENAI_API_BASE_URL, ) for text in texts ] for batch in create_batches( api=CHROMA_CLIENT, ids=[str(uuid.uuid1()) for _ in texts], metadatas=metadatas, embeddings=embeddings, ): collection.add(*batch) return True except Exception as e: log.exception(e) if e.__class__.__name__ == "UniqueConstraintError": return True return False def get_loader(filename: str, file_content_type: str, file_path: str): file_ext = filename.split(".")[-1].lower() known_type = True known_source_ext = [ "go", "py", "java", "sh", "bat", "ps1", "cmd", "js", "ts", "css", "cpp", "hpp", "h", "c", "cs", "sql", "log", "ini", "pl", "pm", "r", "dart", "dockerfile", "env", "php", "hs", "hsc", "lua", "nginxconf", "conf", "m", "mm", "plsql", "perl", "rb", "rs", "db2", "scala", "bash", "swift", "vue", "svelte", ] if file_ext == "pdf": loader = PyPDFLoader(file_path, extract_images=app.state.PDF_EXTRACT_IMAGES) elif file_ext == "csv": loader = CSVLoader(file_path) elif file_ext == "rst": loader = UnstructuredRSTLoader(file_path, mode="elements") elif file_ext == "xml": loader = UnstructuredXMLLoader(file_path) elif file_ext in ["htm", "html"]: loader = BSHTMLLoader(file_path, open_encoding="unicode_escape") elif file_ext == "md": loader = UnstructuredMarkdownLoader(file_path) elif file_content_type == "application/epub+zip": loader = UnstructuredEPubLoader(file_path) elif ( file_content_type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document" or file_ext in ["doc", "docx"] ): loader = Docx2txtLoader(file_path) elif file_content_type in [ "application/vnd.ms-excel", "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", ] or file_ext in ["xls", "xlsx"]: loader = UnstructuredExcelLoader(file_path) elif file_ext in known_source_ext or ( file_content_type and file_content_type.find("text/") >= 0 ): loader = TextLoader(file_path, autodetect_encoding=True) else: loader = TextLoader(file_path, autodetect_encoding=True) known_type = False return loader, known_type @app.post("/doc") def store_doc( collection_name: Optional[str] = Form(None), file: UploadFile = File(...), user=Depends(get_current_user), ): # "https://www.gutenberg.org/files/1727/1727-h/1727-h.htm" log.info(f"file.content_type: {file.content_type}") try: unsanitized_filename = file.filename filename = os.path.basename(unsanitized_filename) file_path = f"{UPLOAD_DIR}/{filename}" contents = file.file.read() with open(file_path, "wb") as f: f.write(contents) f.close() f = open(file_path, "rb") if collection_name == None: collection_name = calculate_sha256(f)[:63] f.close() loader, known_type = get_loader(filename, file.content_type, file_path) data = loader.load() try: result = store_data_in_vector_db(data, collection_name) if result: return { "status": True, "collection_name": collection_name, "filename": filename, "known_type": known_type, } except Exception as e: raise HTTPException( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=e, ) except Exception as e: log.exception(e) if "No pandoc was found" in str(e): raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED, ) else: raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=ERROR_MESSAGES.DEFAULT(e), ) class TextRAGForm(BaseModel): name: str content: str collection_name: Optional[str] = None @app.post("/text") def store_text( form_data: TextRAGForm, user=Depends(get_current_user), ): collection_name = form_data.collection_name if collection_name == None: collection_name = calculate_sha256_string(form_data.content) result = store_text_in_vector_db( form_data.content, metadata={"name": form_data.name, "created_by": user.id}, collection_name=collection_name, ) if result: return {"status": True, "collection_name": collection_name} else: raise HTTPException( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=ERROR_MESSAGES.DEFAULT(), ) @app.get("/scan") def scan_docs_dir(user=Depends(get_admin_user)): for path in Path(DOCS_DIR).rglob("./**/*"): try: if path.is_file() and not path.name.startswith("."): tags = extract_folders_after_data_docs(path) filename = path.name file_content_type = mimetypes.guess_type(path) f = open(path, "rb") collection_name = calculate_sha256(f)[:63] f.close() loader, known_type = get_loader( filename, file_content_type[0], str(path) ) data = loader.load() try: result = store_data_in_vector_db(data, collection_name) if result: sanitized_filename = sanitize_filename(filename) doc = Documents.get_doc_by_name(sanitized_filename) if doc == None: doc = Documents.insert_new_doc( user.id, DocumentForm( **{ "name": sanitized_filename, "title": filename, "collection_name": collection_name, "filename": filename, "content": ( json.dumps( { "tags": list( map( lambda name: {"name": name}, tags, ) ) } ) if len(tags) else "{}" ), } ), ) except Exception as e: log.exception(e) pass except Exception as e: log.exception(e) return True @app.get("/reset/db") def reset_vector_db(user=Depends(get_admin_user)): CHROMA_CLIENT.reset() @app.get("/reset") def reset(user=Depends(get_admin_user)) -> bool: folder = f"{UPLOAD_DIR}" for filename in os.listdir(folder): file_path = os.path.join(folder, filename) try: if os.path.isfile(file_path) or os.path.islink(file_path): os.unlink(file_path) elif os.path.isdir(file_path): shutil.rmtree(file_path) except Exception as e: log.error("Failed to delete %s. Reason: %s" % (file_path, e)) try: CHROMA_CLIENT.reset() except Exception as e: log.exception(e) return True