from fastapi import FastAPI, Request, Response, HTTPException, Depends from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import StreamingResponse, JSONResponse, FileResponse import requests import aiohttp import asyncio import json import logging from pydantic import BaseModel from starlette.background import BackgroundTask from apps.webui.models.models import Models from apps.webui.models.users import Users from constants import ERROR_MESSAGES from utils.utils import ( decode_token, get_current_user, get_verified_user, get_admin_user, ) from config import ( SRC_LOG_LEVELS, ENABLE_OPENAI_API, OPENAI_API_BASE_URLS, OPENAI_API_KEYS, CACHE_DIR, ENABLE_MODEL_FILTER, MODEL_FILTER_LIST, AppConfig, ) from typing import List, Optional import hashlib from pathlib import Path log = logging.getLogger(__name__) log.setLevel(SRC_LOG_LEVELS["OPENAI"]) app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) app.state.config = AppConfig() app.state.config.ENABLE_MODEL_FILTER = ENABLE_MODEL_FILTER app.state.config.MODEL_FILTER_LIST = MODEL_FILTER_LIST app.state.config.ENABLE_OPENAI_API = ENABLE_OPENAI_API app.state.config.OPENAI_API_BASE_URLS = OPENAI_API_BASE_URLS app.state.config.OPENAI_API_KEYS = OPENAI_API_KEYS app.state.MODELS = {} @app.middleware("http") async def check_url(request: Request, call_next): if len(app.state.MODELS) == 0: await get_all_models() else: pass response = await call_next(request) return response @app.get("/config") async def get_config(user=Depends(get_admin_user)): return {"ENABLE_OPENAI_API": app.state.config.ENABLE_OPENAI_API} class OpenAIConfigForm(BaseModel): enable_openai_api: Optional[bool] = None @app.post("/config/update") async def update_config(form_data: OpenAIConfigForm, user=Depends(get_admin_user)): app.state.config.ENABLE_OPENAI_API = form_data.enable_openai_api return {"ENABLE_OPENAI_API": app.state.config.ENABLE_OPENAI_API} class UrlsUpdateForm(BaseModel): urls: List[str] class KeysUpdateForm(BaseModel): keys: List[str] @app.get("/urls") async def get_openai_urls(user=Depends(get_admin_user)): return {"OPENAI_API_BASE_URLS": app.state.config.OPENAI_API_BASE_URLS} @app.post("/urls/update") async def update_openai_urls(form_data: UrlsUpdateForm, user=Depends(get_admin_user)): await get_all_models() app.state.config.OPENAI_API_BASE_URLS = form_data.urls return {"OPENAI_API_BASE_URLS": app.state.config.OPENAI_API_BASE_URLS} @app.get("/keys") async def get_openai_keys(user=Depends(get_admin_user)): return {"OPENAI_API_KEYS": app.state.config.OPENAI_API_KEYS} @app.post("/keys/update") async def update_openai_key(form_data: KeysUpdateForm, user=Depends(get_admin_user)): app.state.config.OPENAI_API_KEYS = form_data.keys return {"OPENAI_API_KEYS": app.state.config.OPENAI_API_KEYS} @app.post("/audio/speech") async def speech(request: Request, user=Depends(get_verified_user)): idx = None try: idx = app.state.config.OPENAI_API_BASE_URLS.index("https://api.openai.com/v1") body = await request.body() name = hashlib.sha256(body).hexdigest() SPEECH_CACHE_DIR = Path(CACHE_DIR).joinpath("./audio/speech/") SPEECH_CACHE_DIR.mkdir(parents=True, exist_ok=True) file_path = SPEECH_CACHE_DIR.joinpath(f"{name}.mp3") file_body_path = SPEECH_CACHE_DIR.joinpath(f"{name}.json") # Check if the file already exists in the cache if file_path.is_file(): return FileResponse(file_path) headers = {} headers["Authorization"] = f"Bearer {app.state.config.OPENAI_API_KEYS[idx]}" headers["Content-Type"] = "application/json" if "openrouter.ai" in app.state.config.OPENAI_API_BASE_URLS[idx]: headers["HTTP-Referer"] = "https://openwebui.com/" headers["X-Title"] = "Open WebUI" r = None try: r = requests.post( url=f"{app.state.config.OPENAI_API_BASE_URLS[idx]}/audio/speech", data=body, headers=headers, stream=True, ) r.raise_for_status() # Save the streaming content to a file with open(file_path, "wb") as f: for chunk in r.iter_content(chunk_size=8192): f.write(chunk) with open(file_body_path, "w") as f: json.dump(json.loads(body.decode("utf-8")), f) # Return the saved file return FileResponse(file_path) except Exception as e: log.exception(e) error_detail = "Open WebUI: Server Connection Error" if r is not None: try: res = r.json() if "error" in res: error_detail = f"External: {res['error']}" except: error_detail = f"External: {e}" raise HTTPException( status_code=r.status_code if r else 500, detail=error_detail ) except ValueError: raise HTTPException(status_code=401, detail=ERROR_MESSAGES.OPENAI_NOT_FOUND) async def fetch_url(url, key): timeout = aiohttp.ClientTimeout(total=5) try: headers = {"Authorization": f"Bearer {key}"} async with aiohttp.ClientSession(timeout=timeout, trust_env=True) as session: async with session.get(url, headers=headers) as response: return await response.json() except Exception as e: # Handle connection error here log.error(f"Connection error: {e}") return None async def cleanup_response( response: Optional[aiohttp.ClientResponse], session: Optional[aiohttp.ClientSession], ): if response: response.close() if session: await session.close() def merge_models_lists(model_lists): log.debug(f"merge_models_lists {model_lists}") merged_list = [] for idx, models in enumerate(model_lists): if models is not None and "error" not in models: merged_list.extend( [ { **model, "name": model.get("name", model["id"]), "owned_by": "openai", "openai": model, "urlIdx": idx, } for model in models if "api.openai.com" not in app.state.config.OPENAI_API_BASE_URLS[idx] or "gpt" in model["id"] ] ) return merged_list async def get_all_models(raw: bool = False): log.info("get_all_models()") if ( len(app.state.config.OPENAI_API_KEYS) == 1 and app.state.config.OPENAI_API_KEYS[0] == "" ) or not app.state.config.ENABLE_OPENAI_API: models = {"data": []} else: # Check if API KEYS length is same than API URLS length if len(app.state.config.OPENAI_API_KEYS) != len( app.state.config.OPENAI_API_BASE_URLS ): # if there are more keys than urls, remove the extra keys if len(app.state.config.OPENAI_API_KEYS) > len( app.state.config.OPENAI_API_BASE_URLS ): app.state.config.OPENAI_API_KEYS = app.state.config.OPENAI_API_KEYS[ : len(app.state.config.OPENAI_API_BASE_URLS) ] # if there are more urls than keys, add empty keys else: app.state.config.OPENAI_API_KEYS += [ "" for _ in range( len(app.state.config.OPENAI_API_BASE_URLS) - len(app.state.config.OPENAI_API_KEYS) ) ] tasks = [ fetch_url(f"{url}/models", app.state.config.OPENAI_API_KEYS[idx]) for idx, url in enumerate(app.state.config.OPENAI_API_BASE_URLS) ] responses = await asyncio.gather(*tasks) log.debug(f"get_all_models:responses() {responses}") if raw: return responses models = { "data": merge_models_lists( list( map( lambda response: ( response["data"] if (response and "data" in response) else (response if isinstance(response, list) else None) ), responses, ) ) ) } log.debug(f"models: {models}") app.state.MODELS = {model["id"]: model for model in models["data"]} return models @app.get("/models") @app.get("/models/{url_idx}") async def get_models(url_idx: Optional[int] = None, user=Depends(get_current_user)): if url_idx == None: models = await get_all_models() if app.state.config.ENABLE_MODEL_FILTER: if user.role == "user": models["data"] = list( filter( lambda model: model["id"] in app.state.config.MODEL_FILTER_LIST, models["data"], ) ) return models return models else: url = app.state.config.OPENAI_API_BASE_URLS[url_idx] key = app.state.config.OPENAI_API_KEYS[url_idx] headers = {} headers["Authorization"] = f"Bearer {key}" headers["Content-Type"] = "application/json" r = None try: r = requests.request(method="GET", url=f"{url}/models", headers=headers) r.raise_for_status() response_data = r.json() if "api.openai.com" in url: response_data["data"] = list( filter(lambda model: "gpt" in model["id"], response_data["data"]) ) return response_data except Exception as e: log.exception(e) error_detail = "Open WebUI: Server Connection Error" if r is not None: try: res = r.json() if "error" in res: error_detail = f"External: {res['error']}" except: error_detail = f"External: {e}" raise HTTPException( status_code=r.status_code if r else 500, detail=error_detail, ) @app.api_route("/{path:path}", methods=["GET", "POST", "PUT", "DELETE"]) async def proxy(path: str, request: Request, user=Depends(get_verified_user)): idx = 0 body = await request.body() # TODO: Remove below after gpt-4-vision fix from Open AI # Try to decode the body of the request from bytes to a UTF-8 string (Require add max_token to fix gpt-4-vision) payload = None try: if "chat/completions" in path: body = body.decode("utf-8") body = json.loads(body) payload = {**body} model_id = body.get("model") model_info = Models.get_model_by_id(model_id) if model_info: print(model_info) if model_info.base_model_id: payload["model"] = model_info.base_model_id model_info.params = model_info.params.model_dump() if model_info.params: if model_info.params.get("temperature", None) is not None: payload["temperature"] = float( model_info.params.get("temperature") ) if model_info.params.get("top_p", None): payload["top_p"] = int(model_info.params.get("top_p", None)) if model_info.params.get("max_tokens", None): payload["max_tokens"] = int( model_info.params.get("max_tokens", None) ) if model_info.params.get("frequency_penalty", None): payload["frequency_penalty"] = int( model_info.params.get("frequency_penalty", None) ) if model_info.params.get("seed", None): payload["seed"] = model_info.params.get("seed", None) if model_info.params.get("stop", None): payload["stop"] = ( [ bytes(stop, "utf-8").decode("unicode_escape") for stop in model_info.params["stop"] ] if model_info.params.get("stop", None) else None ) if model_info.params.get("system", None): # Check if the payload already has a system message # If not, add a system message to the payload if payload.get("messages"): for message in payload["messages"]: if message.get("role") == "system": message["content"] = ( model_info.params.get("system", None) + message["content"] ) break else: payload["messages"].insert( 0, { "role": "system", "content": model_info.params.get("system", None), }, ) else: pass model = app.state.MODELS[payload.get("model")] idx = model["urlIdx"] if "pipeline" in model and model.get("pipeline"): payload["user"] = {"name": user.name, "id": user.id} # Check if the model is "gpt-4-vision-preview" and set "max_tokens" to 4000 # This is a workaround until OpenAI fixes the issue with this model if payload.get("model") == "gpt-4-vision-preview": if "max_tokens" not in payload: payload["max_tokens"] = 4000 log.debug("Modified payload:", payload) # Convert the modified body back to JSON payload = json.dumps(payload) except json.JSONDecodeError as e: log.error("Error loading request body into a dictionary:", e) print(payload) url = app.state.config.OPENAI_API_BASE_URLS[idx] key = app.state.config.OPENAI_API_KEYS[idx] target_url = f"{url}/{path}" headers = {} headers["Authorization"] = f"Bearer {key}" headers["Content-Type"] = "application/json" r = None session = None streaming = False try: session = aiohttp.ClientSession(trust_env=True) r = await session.request( method=request.method, url=target_url, data=payload if payload else body, headers=headers, ) r.raise_for_status() # Check if response is SSE if "text/event-stream" in r.headers.get("Content-Type", ""): streaming = True return StreamingResponse( r.content, status_code=r.status, headers=dict(r.headers), background=BackgroundTask( cleanup_response, response=r, session=session ), ) else: response_data = await r.json() return response_data except Exception as e: log.exception(e) error_detail = "Open WebUI: Server Connection Error" if r is not None: try: res = await r.json() print(res) if "error" in res: error_detail = f"External: {res['error']['message'] if 'message' in res['error'] else res['error']}" except: error_detail = f"External: {e}" raise HTTPException(status_code=r.status if r else 500, detail=error_detail) finally: if not streaming and session: if r: r.close() await session.close()