from contextlib import asynccontextmanager from bs4 import BeautifulSoup import json import markdown import time import os import sys import logging import aiohttp import requests import mimetypes import shutil import os import asyncio from fastapi import FastAPI, Request, Depends, status, UploadFile, File, Form from fastapi.staticfiles import StaticFiles from fastapi.responses import JSONResponse from fastapi import HTTPException from fastapi.middleware.wsgi import WSGIMiddleware from fastapi.middleware.cors import CORSMiddleware from starlette.exceptions import HTTPException as StarletteHTTPException from starlette.middleware.base import BaseHTTPMiddleware from starlette.responses import StreamingResponse, Response from apps.socket.main import app as socket_app from apps.ollama.main import ( app as ollama_app, OpenAIChatCompletionForm, get_all_models as get_ollama_models, generate_openai_chat_completion as generate_ollama_chat_completion, ) from apps.openai.main import ( app as openai_app, get_all_models as get_openai_models, generate_chat_completion as generate_openai_chat_completion, ) from apps.audio.main import app as audio_app from apps.images.main import app as images_app from apps.rag.main import app as rag_app from apps.webui.main import app as webui_app from pydantic import BaseModel from typing import List, Optional from apps.webui.models.models import Models, ModelModel from utils.utils import ( get_admin_user, get_verified_user, get_current_user, get_http_authorization_cred, ) from utils.task import title_generation_template, search_query_generation_template from apps.rag.utils import rag_messages from config import ( CONFIG_DATA, WEBUI_NAME, WEBUI_URL, WEBUI_AUTH, ENV, VERSION, CHANGELOG, FRONTEND_BUILD_DIR, CACHE_DIR, STATIC_DIR, ENABLE_OPENAI_API, ENABLE_OLLAMA_API, ENABLE_MODEL_FILTER, MODEL_FILTER_LIST, GLOBAL_LOG_LEVEL, SRC_LOG_LEVELS, WEBHOOK_URL, ENABLE_ADMIN_EXPORT, WEBUI_BUILD_HASH, TASK_MODEL, TASK_MODEL_EXTERNAL, TITLE_GENERATION_PROMPT_TEMPLATE, SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE, SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD, AppConfig, ) from constants import ERROR_MESSAGES logging.basicConfig(stream=sys.stdout, level=GLOBAL_LOG_LEVEL) log = logging.getLogger(__name__) log.setLevel(SRC_LOG_LEVELS["MAIN"]) class SPAStaticFiles(StaticFiles): async def get_response(self, path: str, scope): try: return await super().get_response(path, scope) except (HTTPException, StarletteHTTPException) as ex: if ex.status_code == 404: return await super().get_response("index.html", scope) else: raise ex print( rf""" ___ __ __ _ _ _ ___ / _ \ _ __ ___ _ __ \ \ / /__| |__ | | | |_ _| | | | | '_ \ / _ \ '_ \ \ \ /\ / / _ \ '_ \| | | || | | |_| | |_) | __/ | | | \ V V / __/ |_) | |_| || | \___/| .__/ \___|_| |_| \_/\_/ \___|_.__/ \___/|___| |_| v{VERSION} - building the best open-source AI user interface. {f"Commit: {WEBUI_BUILD_HASH}" if WEBUI_BUILD_HASH != "dev-build" else ""} https://github.com/open-webui/open-webui """ ) @asynccontextmanager async def lifespan(app: FastAPI): yield app = FastAPI( docs_url="/docs" if ENV == "dev" else None, redoc_url=None, lifespan=lifespan ) app.state.config = AppConfig() app.state.config.ENABLE_OPENAI_API = ENABLE_OPENAI_API app.state.config.ENABLE_OLLAMA_API = ENABLE_OLLAMA_API app.state.config.ENABLE_MODEL_FILTER = ENABLE_MODEL_FILTER app.state.config.MODEL_FILTER_LIST = MODEL_FILTER_LIST app.state.config.WEBHOOK_URL = WEBHOOK_URL app.state.config.TASK_MODEL = TASK_MODEL app.state.config.TASK_MODEL_EXTERNAL = TASK_MODEL_EXTERNAL app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE = TITLE_GENERATION_PROMPT_TEMPLATE app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE = ( SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE ) app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD = ( SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD ) app.state.MODELS = {} origins = ["*"] # Custom middleware to add security headers # class SecurityHeadersMiddleware(BaseHTTPMiddleware): # async def dispatch(self, request: Request, call_next): # response: Response = await call_next(request) # response.headers["Cross-Origin-Opener-Policy"] = "same-origin" # response.headers["Cross-Origin-Embedder-Policy"] = "require-corp" # return response # app.add_middleware(SecurityHeadersMiddleware) class RAGMiddleware(BaseHTTPMiddleware): async def dispatch(self, request: Request, call_next): return_citations = False if request.method == "POST" and ( "/ollama/api/chat" in request.url.path or "/chat/completions" in request.url.path ): log.debug(f"request.url.path: {request.url.path}") # Read the original request body body = await request.body() # Decode body to string body_str = body.decode("utf-8") # Parse string to JSON data = json.loads(body_str) if body_str else {} return_citations = data.get("citations", False) if "citations" in data: del data["citations"] # Example: Add a new key-value pair or modify existing ones # data["modified"] = True # Example modification if "docs" in data: data = {**data} data["messages"], citations = rag_messages( docs=data["docs"], messages=data["messages"], template=rag_app.state.config.RAG_TEMPLATE, embedding_function=rag_app.state.EMBEDDING_FUNCTION, k=rag_app.state.config.TOP_K, reranking_function=rag_app.state.sentence_transformer_rf, r=rag_app.state.config.RELEVANCE_THRESHOLD, hybrid_search=rag_app.state.config.ENABLE_RAG_HYBRID_SEARCH, ) del data["docs"] log.debug( f"data['messages']: {data['messages']}, citations: {citations}" ) modified_body_bytes = json.dumps(data).encode("utf-8") # Replace the request body with the modified one request._body = modified_body_bytes # Set custom header to ensure content-length matches new body length request.headers.__dict__["_list"] = [ (b"content-length", str(len(modified_body_bytes)).encode("utf-8")), *[ (k, v) for k, v in request.headers.raw if k.lower() != b"content-length" ], ] response = await call_next(request) if return_citations: # Inject the citations into the response if isinstance(response, StreamingResponse): # If it's a streaming response, inject it as SSE event or NDJSON line content_type = response.headers.get("Content-Type") if "text/event-stream" in content_type: return StreamingResponse( self.openai_stream_wrapper(response.body_iterator, citations), ) if "application/x-ndjson" in content_type: return StreamingResponse( self.ollama_stream_wrapper(response.body_iterator, citations), ) return response async def _receive(self, body: bytes): return {"type": "http.request", "body": body, "more_body": False} async def openai_stream_wrapper(self, original_generator, citations): yield f"data: {json.dumps({'citations': citations})}\n\n" async for data in original_generator: yield data async def ollama_stream_wrapper(self, original_generator, citations): yield f"{json.dumps({'citations': citations})}\n" async for data in original_generator: yield data app.add_middleware(RAGMiddleware) def filter_pipeline(payload, user): user = {"id": user.id, "name": user.name, "role": user.role} model_id = payload["model"] filters = [ model for model in app.state.MODELS.values() if "pipeline" in model and "type" in model["pipeline"] and model["pipeline"]["type"] == "filter" and ( model["pipeline"]["pipelines"] == ["*"] or any( model_id == target_model_id for target_model_id in model["pipeline"]["pipelines"] ) ) ] sorted_filters = sorted(filters, key=lambda x: x["pipeline"]["priority"]) model = app.state.MODELS[model_id] if "pipeline" in model: sorted_filters.append(model) for filter in sorted_filters: r = None try: urlIdx = filter["urlIdx"] url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] if key != "": headers = {"Authorization": f"Bearer {key}"} r = requests.post( f"{url}/{filter['id']}/filter/inlet", headers=headers, json={ "user": user, "body": payload, }, ) r.raise_for_status() payload = r.json() except Exception as e: # Handle connection error here print(f"Connection error: {e}") if r is not None: try: res = r.json() if "detail" in res: return JSONResponse( status_code=r.status_code, content=res, ) except: pass else: pass if "pipeline" not in app.state.MODELS[model_id]: if "chat_id" in payload: del payload["chat_id"] if "title" in payload: del payload["title"] return payload class PipelineMiddleware(BaseHTTPMiddleware): async def dispatch(self, request: Request, call_next): if request.method == "POST" and ( "/ollama/api/chat" in request.url.path or "/chat/completions" in request.url.path ): log.debug(f"request.url.path: {request.url.path}") # Read the original request body body = await request.body() # Decode body to string body_str = body.decode("utf-8") # Parse string to JSON data = json.loads(body_str) if body_str else {} user = get_current_user( get_http_authorization_cred(request.headers.get("Authorization")) ) data = filter_pipeline(data, user) modified_body_bytes = json.dumps(data).encode("utf-8") # Replace the request body with the modified one request._body = modified_body_bytes # Set custom header to ensure content-length matches new body length request.headers.__dict__["_list"] = [ (b"content-length", str(len(modified_body_bytes)).encode("utf-8")), *[ (k, v) for k, v in request.headers.raw if k.lower() != b"content-length" ], ] response = await call_next(request) return response async def _receive(self, body: bytes): return {"type": "http.request", "body": body, "more_body": False} app.add_middleware(PipelineMiddleware) app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) @app.middleware("http") async def check_url(request: Request, call_next): if len(app.state.MODELS) == 0: await get_all_models() else: pass start_time = int(time.time()) response = await call_next(request) process_time = int(time.time()) - start_time response.headers["X-Process-Time"] = str(process_time) return response @app.middleware("http") async def update_embedding_function(request: Request, call_next): response = await call_next(request) if "/embedding/update" in request.url.path: webui_app.state.EMBEDDING_FUNCTION = rag_app.state.EMBEDDING_FUNCTION return response app.mount("/ws", socket_app) app.mount("/ollama", ollama_app) app.mount("/openai", openai_app) app.mount("/images/api/v1", images_app) app.mount("/audio/api/v1", audio_app) app.mount("/rag/api/v1", rag_app) app.mount("/api/v1", webui_app) webui_app.state.EMBEDDING_FUNCTION = rag_app.state.EMBEDDING_FUNCTION async def get_all_models(): openai_models = [] ollama_models = [] if app.state.config.ENABLE_OPENAI_API: openai_models = await get_openai_models() openai_models = openai_models["data"] if app.state.config.ENABLE_OLLAMA_API: ollama_models = await get_ollama_models() ollama_models = [ { "id": model["model"], "name": model["name"], "object": "model", "created": int(time.time()), "owned_by": "ollama", "ollama": model, } for model in ollama_models["models"] ] models = openai_models + ollama_models custom_models = Models.get_all_models() for custom_model in custom_models: if custom_model.base_model_id == None: for model in models: if ( custom_model.id == model["id"] or custom_model.id == model["id"].split(":")[0] ): model["name"] = custom_model.name model["info"] = custom_model.model_dump() else: owned_by = "openai" for model in models: if ( custom_model.base_model_id == model["id"] or custom_model.base_model_id == model["id"].split(":")[0] ): owned_by = model["owned_by"] break models.append( { "id": custom_model.id, "name": custom_model.name, "object": "model", "created": custom_model.created_at, "owned_by": owned_by, "info": custom_model.model_dump(), "preset": True, } ) app.state.MODELS = {model["id"]: model for model in models} webui_app.state.MODELS = app.state.MODELS return models @app.get("/api/models") async def get_models(user=Depends(get_verified_user)): models = await get_all_models() # Filter out filter pipelines models = [ model for model in models if "pipeline" not in model or model["pipeline"].get("type", None) != "filter" ] if app.state.config.ENABLE_MODEL_FILTER: if user.role == "user": models = list( filter( lambda model: model["id"] in app.state.config.MODEL_FILTER_LIST, models, ) ) return {"data": models} return {"data": models} @app.get("/api/task/config") async def get_task_config(user=Depends(get_verified_user)): return { "TASK_MODEL": app.state.config.TASK_MODEL, "TASK_MODEL_EXTERNAL": app.state.config.TASK_MODEL_EXTERNAL, "TITLE_GENERATION_PROMPT_TEMPLATE": app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE, "SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE": app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE, "SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD": app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD, } class TaskConfigForm(BaseModel): TASK_MODEL: Optional[str] TASK_MODEL_EXTERNAL: Optional[str] TITLE_GENERATION_PROMPT_TEMPLATE: str SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE: str SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD: int @app.post("/api/task/config/update") async def update_task_config(form_data: TaskConfigForm, user=Depends(get_admin_user)): app.state.config.TASK_MODEL = form_data.TASK_MODEL app.state.config.TASK_MODEL_EXTERNAL = form_data.TASK_MODEL_EXTERNAL app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE = ( form_data.TITLE_GENERATION_PROMPT_TEMPLATE ) app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE = ( form_data.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE ) app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD = ( form_data.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD ) return { "TASK_MODEL": app.state.config.TASK_MODEL, "TASK_MODEL_EXTERNAL": app.state.config.TASK_MODEL_EXTERNAL, "TITLE_GENERATION_PROMPT_TEMPLATE": app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE, "SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE": app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE, "SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD": app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD, } @app.post("/api/task/title/completions") async def generate_title(form_data: dict, user=Depends(get_verified_user)): print("generate_title") model_id = form_data["model"] if model_id not in app.state.MODELS: raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail="Model not found", ) # Check if the user has a custom task model # If the user has a custom task model, use that model if app.state.MODELS[model_id]["owned_by"] == "ollama": if app.state.config.TASK_MODEL: task_model_id = app.state.config.TASK_MODEL if task_model_id in app.state.MODELS: model_id = task_model_id else: if app.state.config.TASK_MODEL_EXTERNAL: task_model_id = app.state.config.TASK_MODEL_EXTERNAL if task_model_id in app.state.MODELS: model_id = task_model_id print(model_id) model = app.state.MODELS[model_id] template = app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE content = title_generation_template( template, form_data["prompt"], user.model_dump() ) payload = { "model": model_id, "messages": [{"role": "user", "content": content}], "stream": False, "max_tokens": 50, "chat_id": form_data.get("chat_id", None), "title": True, } print(payload) payload = filter_pipeline(payload, user) if model["owned_by"] == "ollama": return await generate_ollama_chat_completion( OpenAIChatCompletionForm(**payload), user=user ) else: return await generate_openai_chat_completion(payload, user=user) @app.post("/api/task/query/completions") async def generate_search_query(form_data: dict, user=Depends(get_verified_user)): print("generate_search_query") if len(form_data["prompt"]) < app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD: raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=f"Skip search query generation for short prompts (< {app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD} characters)", ) model_id = form_data["model"] if model_id not in app.state.MODELS: raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail="Model not found", ) # Check if the user has a custom task model # If the user has a custom task model, use that model if app.state.MODELS[model_id]["owned_by"] == "ollama": if app.state.config.TASK_MODEL: task_model_id = app.state.config.TASK_MODEL if task_model_id in app.state.MODELS: model_id = task_model_id else: if app.state.config.TASK_MODEL_EXTERNAL: task_model_id = app.state.config.TASK_MODEL_EXTERNAL if task_model_id in app.state.MODELS: model_id = task_model_id print(model_id) model = app.state.MODELS[model_id] template = app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE content = search_query_generation_template( template, form_data["prompt"], user.model_dump() ) payload = { "model": model_id, "messages": [{"role": "user", "content": content}], "stream": False, "max_tokens": 30, } print(payload) payload = filter_pipeline(payload, user) if model["owned_by"] == "ollama": return await generate_ollama_chat_completion( OpenAIChatCompletionForm(**payload), user=user ) else: return await generate_openai_chat_completion(payload, user=user) @app.post("/api/chat/completions") async def generate_chat_completions(form_data: dict, user=Depends(get_verified_user)): model_id = form_data["model"] if model_id not in app.state.MODELS: raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail="Model not found", ) model = app.state.MODELS[model_id] print(model) if model["owned_by"] == "ollama": return await generate_ollama_chat_completion( OpenAIChatCompletionForm(**form_data), user=user ) else: return await generate_openai_chat_completion(form_data, user=user) @app.post("/api/chat/completed") async def chat_completed(form_data: dict, user=Depends(get_verified_user)): data = form_data model_id = data["model"] filters = [ model for model in app.state.MODELS.values() if "pipeline" in model and "type" in model["pipeline"] and model["pipeline"]["type"] == "filter" and ( model["pipeline"]["pipelines"] == ["*"] or any( model_id == target_model_id for target_model_id in model["pipeline"]["pipelines"] ) ) ] sorted_filters = sorted(filters, key=lambda x: x["pipeline"]["priority"]) print(model_id) if model_id in app.state.MODELS: model = app.state.MODELS[model_id] if "pipeline" in model: sorted_filters = [model] + sorted_filters for filter in sorted_filters: r = None try: urlIdx = filter["urlIdx"] url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] if key != "": headers = {"Authorization": f"Bearer {key}"} r = requests.post( f"{url}/{filter['id']}/filter/outlet", headers=headers, json={ "user": {"id": user.id, "name": user.name, "role": user.role}, "body": data, }, ) r.raise_for_status() data = r.json() except Exception as e: # Handle connection error here print(f"Connection error: {e}") if r is not None: try: res = r.json() if "detail" in res: return JSONResponse( status_code=r.status_code, content=res, ) except: pass else: pass return data @app.get("/api/pipelines/list") async def get_pipelines_list(user=Depends(get_admin_user)): responses = await get_openai_models(raw=True) print(responses) urlIdxs = [ idx for idx, response in enumerate(responses) if response != None and "pipelines" in response ] return { "data": [ { "url": openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx], "idx": urlIdx, } for urlIdx in urlIdxs ] } @app.post("/api/pipelines/upload") async def upload_pipeline( urlIdx: int = Form(...), file: UploadFile = File(...), user=Depends(get_admin_user) ): print("upload_pipeline", urlIdx, file.filename) # Check if the uploaded file is a python file if not file.filename.endswith(".py"): raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail="Only Python (.py) files are allowed.", ) upload_folder = f"{CACHE_DIR}/pipelines" os.makedirs(upload_folder, exist_ok=True) file_path = os.path.join(upload_folder, file.filename) try: # Save the uploaded file with open(file_path, "wb") as buffer: shutil.copyfileobj(file.file, buffer) url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] headers = {"Authorization": f"Bearer {key}"} with open(file_path, "rb") as f: files = {"file": f} r = requests.post(f"{url}/pipelines/upload", headers=headers, files=files) r.raise_for_status() data = r.json() return {**data} except Exception as e: # Handle connection error here print(f"Connection error: {e}") detail = "Pipeline not found" if r is not None: try: res = r.json() if "detail" in res: detail = res["detail"] except: pass raise HTTPException( status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), detail=detail, ) finally: # Ensure the file is deleted after the upload is completed or on failure if os.path.exists(file_path): os.remove(file_path) class AddPipelineForm(BaseModel): url: str urlIdx: int @app.post("/api/pipelines/add") async def add_pipeline(form_data: AddPipelineForm, user=Depends(get_admin_user)): r = None try: urlIdx = form_data.urlIdx url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] headers = {"Authorization": f"Bearer {key}"} r = requests.post( f"{url}/pipelines/add", headers=headers, json={"url": form_data.url} ) r.raise_for_status() data = r.json() return {**data} except Exception as e: # Handle connection error here print(f"Connection error: {e}") detail = "Pipeline not found" if r is not None: try: res = r.json() if "detail" in res: detail = res["detail"] except: pass raise HTTPException( status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), detail=detail, ) class DeletePipelineForm(BaseModel): id: str urlIdx: int @app.delete("/api/pipelines/delete") async def delete_pipeline(form_data: DeletePipelineForm, user=Depends(get_admin_user)): r = None try: urlIdx = form_data.urlIdx url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] headers = {"Authorization": f"Bearer {key}"} r = requests.delete( f"{url}/pipelines/delete", headers=headers, json={"id": form_data.id} ) r.raise_for_status() data = r.json() return {**data} except Exception as e: # Handle connection error here print(f"Connection error: {e}") detail = "Pipeline not found" if r is not None: try: res = r.json() if "detail" in res: detail = res["detail"] except: pass raise HTTPException( status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), detail=detail, ) @app.get("/api/pipelines") async def get_pipelines(urlIdx: Optional[int] = None, user=Depends(get_admin_user)): r = None try: urlIdx url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] headers = {"Authorization": f"Bearer {key}"} r = requests.get(f"{url}/pipelines", headers=headers) r.raise_for_status() data = r.json() return {**data} except Exception as e: # Handle connection error here print(f"Connection error: {e}") detail = "Pipeline not found" if r is not None: try: res = r.json() if "detail" in res: detail = res["detail"] except: pass raise HTTPException( status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), detail=detail, ) @app.get("/api/pipelines/{pipeline_id}/valves") async def get_pipeline_valves( urlIdx: Optional[int], pipeline_id: str, user=Depends(get_admin_user) ): models = await get_all_models() r = None try: url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] headers = {"Authorization": f"Bearer {key}"} r = requests.get(f"{url}/{pipeline_id}/valves", headers=headers) r.raise_for_status() data = r.json() return {**data} except Exception as e: # Handle connection error here print(f"Connection error: {e}") detail = "Pipeline not found" if r is not None: try: res = r.json() if "detail" in res: detail = res["detail"] except: pass raise HTTPException( status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), detail=detail, ) @app.get("/api/pipelines/{pipeline_id}/valves/spec") async def get_pipeline_valves_spec( urlIdx: Optional[int], pipeline_id: str, user=Depends(get_admin_user) ): models = await get_all_models() r = None try: url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] headers = {"Authorization": f"Bearer {key}"} r = requests.get(f"{url}/{pipeline_id}/valves/spec", headers=headers) r.raise_for_status() data = r.json() return {**data} except Exception as e: # Handle connection error here print(f"Connection error: {e}") detail = "Pipeline not found" if r is not None: try: res = r.json() if "detail" in res: detail = res["detail"] except: pass raise HTTPException( status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), detail=detail, ) @app.post("/api/pipelines/{pipeline_id}/valves/update") async def update_pipeline_valves( urlIdx: Optional[int], pipeline_id: str, form_data: dict, user=Depends(get_admin_user), ): models = await get_all_models() r = None try: url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] headers = {"Authorization": f"Bearer {key}"} r = requests.post( f"{url}/{pipeline_id}/valves/update", headers=headers, json={**form_data}, ) r.raise_for_status() data = r.json() return {**data} except Exception as e: # Handle connection error here print(f"Connection error: {e}") detail = "Pipeline not found" if r is not None: try: res = r.json() if "detail" in res: detail = res["detail"] except: pass raise HTTPException( status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), detail=detail, ) @app.get("/api/config") async def get_app_config(): # Checking and Handling the Absence of 'ui' in CONFIG_DATA default_locale = "en-US" if "ui" in CONFIG_DATA: default_locale = CONFIG_DATA["ui"].get("default_locale", "en-US") # The Rest of the Function Now Uses the Variables Defined Above return { "status": True, "name": WEBUI_NAME, "version": VERSION, "default_locale": default_locale, "default_models": webui_app.state.config.DEFAULT_MODELS, "default_prompt_suggestions": webui_app.state.config.DEFAULT_PROMPT_SUGGESTIONS, "features": { "auth": WEBUI_AUTH, "auth_trusted_header": bool(webui_app.state.AUTH_TRUSTED_EMAIL_HEADER), "enable_signup": webui_app.state.config.ENABLE_SIGNUP, "enable_web_search": rag_app.state.config.ENABLE_RAG_WEB_SEARCH, "enable_image_generation": images_app.state.config.ENABLED, "enable_community_sharing": webui_app.state.config.ENABLE_COMMUNITY_SHARING, "enable_admin_export": ENABLE_ADMIN_EXPORT, }, "audio": { "tts": { "engine": audio_app.state.config.TTS_ENGINE, "voice": audio_app.state.config.TTS_VOICE, }, "stt": { "engine": audio_app.state.config.STT_ENGINE, }, }, } @app.get("/api/config/model/filter") async def get_model_filter_config(user=Depends(get_admin_user)): return { "enabled": app.state.config.ENABLE_MODEL_FILTER, "models": app.state.config.MODEL_FILTER_LIST, } class ModelFilterConfigForm(BaseModel): enabled: bool models: List[str] @app.post("/api/config/model/filter") async def update_model_filter_config( form_data: ModelFilterConfigForm, user=Depends(get_admin_user) ): app.state.config.ENABLE_MODEL_FILTER = form_data.enabled app.state.config.MODEL_FILTER_LIST = form_data.models return { "enabled": app.state.config.ENABLE_MODEL_FILTER, "models": app.state.config.MODEL_FILTER_LIST, } @app.get("/api/webhook") async def get_webhook_url(user=Depends(get_admin_user)): return { "url": app.state.config.WEBHOOK_URL, } class UrlForm(BaseModel): url: str @app.post("/api/webhook") async def update_webhook_url(form_data: UrlForm, user=Depends(get_admin_user)): app.state.config.WEBHOOK_URL = form_data.url webui_app.state.WEBHOOK_URL = app.state.config.WEBHOOK_URL return {"url": app.state.config.WEBHOOK_URL} @app.get("/api/version") async def get_app_config(): return { "version": VERSION, } @app.get("/api/changelog") async def get_app_changelog(): return {key: CHANGELOG[key] for idx, key in enumerate(CHANGELOG) if idx < 5} @app.get("/api/version/updates") async def get_app_latest_release_version(): try: async with aiohttp.ClientSession(trust_env=True) as session: async with session.get( "https://api.github.com/repos/open-webui/open-webui/releases/latest" ) as response: response.raise_for_status() data = await response.json() latest_version = data["tag_name"] return {"current": VERSION, "latest": latest_version[1:]} except aiohttp.ClientError as e: raise HTTPException( status_code=status.HTTP_503_SERVICE_UNAVAILABLE, detail=ERROR_MESSAGES.RATE_LIMIT_EXCEEDED, ) @app.get("/manifest.json") async def get_manifest_json(): return { "name": WEBUI_NAME, "short_name": WEBUI_NAME, "start_url": "/", "display": "standalone", "background_color": "#343541", "theme_color": "#343541", "orientation": "portrait-primary", "icons": [{"src": "/static/logo.png", "type": "image/png", "sizes": "500x500"}], } @app.get("/opensearch.xml") async def get_opensearch_xml(): xml_content = rf""" {WEBUI_NAME} Search {WEBUI_NAME} UTF-8 {WEBUI_URL}/favicon.png {WEBUI_URL} """ return Response(content=xml_content, media_type="application/xml") @app.get("/health") async def healthcheck(): return {"status": True} app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static") app.mount("/cache", StaticFiles(directory=CACHE_DIR), name="cache") if os.path.exists(FRONTEND_BUILD_DIR): mimetypes.add_type("text/javascript", ".js") app.mount( "/", SPAStaticFiles(directory=FRONTEND_BUILD_DIR, html=True), name="spa-static-files", ) else: log.warning( f"Frontend build directory not found at '{FRONTEND_BUILD_DIR}'. Serving API only." )