import time
import logging
import sys
import os
import base64
import asyncio
from aiocache import cached
from typing import Any, Optional
import random
import json
import html
import inspect
import re
import ast
from uuid import uuid4
from concurrent.futures import ThreadPoolExecutor
from fastapi import Request
from fastapi import BackgroundTasks
from starlette.responses import Response, StreamingResponse
from open_webui.models.chats import Chats
from open_webui.models.users import Users
from open_webui.socket.main import (
get_event_call,
get_event_emitter,
get_active_status_by_user_id,
)
from open_webui.routers.tasks import (
generate_queries,
generate_title,
generate_image_prompt,
generate_chat_tags,
)
from open_webui.routers.retrieval import process_web_search, SearchForm
from open_webui.routers.images import image_generations, GenerateImageForm
from open_webui.routers.pipelines import (
process_pipeline_inlet_filter,
process_pipeline_outlet_filter,
)
from open_webui.utils.webhook import post_webhook
from open_webui.models.users import UserModel
from open_webui.models.functions import Functions
from open_webui.models.models import Models
from open_webui.retrieval.utils import get_sources_from_files
from open_webui.utils.chat import generate_chat_completion
from open_webui.utils.task import (
get_task_model_id,
rag_template,
tools_function_calling_generation_template,
)
from open_webui.utils.misc import (
deep_update,
get_message_list,
add_or_update_system_message,
add_or_update_user_message,
get_last_user_message,
get_last_assistant_message,
prepend_to_first_user_message_content,
)
from open_webui.utils.tools import get_tools
from open_webui.utils.plugin import load_function_module_by_id
from open_webui.utils.filter import (
get_sorted_filter_ids,
process_filter_functions,
)
from open_webui.utils.code_interpreter import execute_code_jupyter
from open_webui.tasks import create_task
from open_webui.config import (
CACHE_DIR,
DEFAULT_TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE,
DEFAULT_CODE_INTERPRETER_PROMPT,
)
from open_webui.env import (
SRC_LOG_LEVELS,
GLOBAL_LOG_LEVEL,
BYPASS_MODEL_ACCESS_CONTROL,
ENABLE_REALTIME_CHAT_SAVE,
)
from open_webui.constants import TASKS
logging.basicConfig(stream=sys.stdout, level=GLOBAL_LOG_LEVEL)
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["MAIN"])
async def chat_completion_tools_handler(
request: Request, body: dict, user: UserModel, models, tools
) -> tuple[dict, dict]:
async def get_content_from_response(response) -> Optional[str]:
content = None
if hasattr(response, "body_iterator"):
async for chunk in response.body_iterator:
data = json.loads(chunk.decode("utf-8"))
content = data["choices"][0]["message"]["content"]
# Cleanup any remaining background tasks if necessary
if response.background is not None:
await response.background()
else:
content = response["choices"][0]["message"]["content"]
return content
def get_tools_function_calling_payload(messages, task_model_id, content):
user_message = get_last_user_message(messages)
history = "\n".join(
f"{message['role'].upper()}: \"\"\"{message['content']}\"\"\""
for message in messages[::-1][:4]
)
prompt = f"History:\n{history}\nQuery: {user_message}"
return {
"model": task_model_id,
"messages": [
{"role": "system", "content": content},
{"role": "user", "content": f"Query: {prompt}"},
],
"stream": False,
"metadata": {"task": str(TASKS.FUNCTION_CALLING)},
}
task_model_id = get_task_model_id(
body["model"],
request.app.state.config.TASK_MODEL,
request.app.state.config.TASK_MODEL_EXTERNAL,
models,
)
skip_files = False
sources = []
specs = [tool["spec"] for tool in tools.values()]
tools_specs = json.dumps(specs)
if request.app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE != "":
template = request.app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE
else:
template = DEFAULT_TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE
tools_function_calling_prompt = tools_function_calling_generation_template(
template, tools_specs
)
log.info(f"{tools_function_calling_prompt=}")
payload = get_tools_function_calling_payload(
body["messages"], task_model_id, tools_function_calling_prompt
)
try:
response = await generate_chat_completion(request, form_data=payload, user=user)
log.debug(f"{response=}")
content = await get_content_from_response(response)
log.debug(f"{content=}")
if not content:
return body, {}
try:
content = content[content.find("{") : content.rfind("}") + 1]
if not content:
raise Exception("No JSON object found in the response")
result = json.loads(content)
async def tool_call_handler(tool_call):
nonlocal skip_files
log.debug(f"{tool_call=}")
tool_function_name = tool_call.get("name", None)
if tool_function_name not in tools:
return body, {}
tool_function_params = tool_call.get("parameters", {})
try:
required_params = (
tools[tool_function_name]
.get("spec", {})
.get("parameters", {})
.get("required", [])
)
tool_function = tools[tool_function_name]["callable"]
tool_function_params = {
k: v
for k, v in tool_function_params.items()
if k in required_params
}
tool_output = await tool_function(**tool_function_params)
except Exception as e:
tool_output = str(e)
if isinstance(tool_output, str):
if tools[tool_function_name]["citation"]:
sources.append(
{
"source": {
"name": f"TOOL:{tools[tool_function_name]['toolkit_id']}/{tool_function_name}"
},
"document": [tool_output],
"metadata": [
{
"source": f"TOOL:{tools[tool_function_name]['toolkit_id']}/{tool_function_name}"
}
],
}
)
else:
sources.append(
{
"source": {},
"document": [tool_output],
"metadata": [
{
"source": f"TOOL:{tools[tool_function_name]['toolkit_id']}/{tool_function_name}"
}
],
}
)
if tools[tool_function_name]["file_handler"]:
skip_files = True
# check if "tool_calls" in result
if result.get("tool_calls"):
for tool_call in result.get("tool_calls"):
await tool_call_handler(tool_call)
else:
await tool_call_handler(result)
except Exception as e:
log.exception(f"Error: {e}")
content = None
except Exception as e:
log.exception(f"Error: {e}")
content = None
log.debug(f"tool_contexts: {sources}")
if skip_files and "files" in body.get("metadata", {}):
del body["metadata"]["files"]
return body, {"sources": sources}
async def chat_web_search_handler(
request: Request, form_data: dict, extra_params: dict, user
):
event_emitter = extra_params["__event_emitter__"]
await event_emitter(
{
"type": "status",
"data": {
"action": "web_search",
"description": "Generating search query",
"done": False,
},
}
)
messages = form_data["messages"]
user_message = get_last_user_message(messages)
queries = []
try:
res = await generate_queries(
request,
{
"model": form_data["model"],
"messages": messages,
"prompt": user_message,
"type": "web_search",
},
user,
)
response = res["choices"][0]["message"]["content"]
try:
bracket_start = response.find("{")
bracket_end = response.rfind("}") + 1
if bracket_start == -1 or bracket_end == -1:
raise Exception("No JSON object found in the response")
response = response[bracket_start:bracket_end]
queries = json.loads(response)
queries = queries.get("queries", [])
except Exception as e:
queries = [response]
except Exception as e:
log.exception(e)
queries = [user_message]
if len(queries) == 0:
await event_emitter(
{
"type": "status",
"data": {
"action": "web_search",
"description": "No search query generated",
"done": True,
},
}
)
return form_data
all_results = []
for searchQuery in queries:
await event_emitter(
{
"type": "status",
"data": {
"action": "web_search",
"description": 'Searching "{{searchQuery}}"',
"query": searchQuery,
"done": False,
},
}
)
try:
results = await process_web_search(
request,
SearchForm(
**{
"query": searchQuery,
}
),
user=user,
)
if results:
all_results.append(results)
files = form_data.get("files", [])
if request.app.state.config.RAG_WEB_SEARCH_FULL_CONTEXT:
files.append(
{
"docs": results.get("docs", []),
"name": searchQuery,
"type": "web_search_docs",
"urls": results["filenames"],
}
)
else:
files.append(
{
"collection_name": results["collection_name"],
"name": searchQuery,
"type": "web_search_results",
"urls": results["filenames"],
}
)
form_data["files"] = files
except Exception as e:
log.exception(e)
await event_emitter(
{
"type": "status",
"data": {
"action": "web_search",
"description": 'Error searching "{{searchQuery}}"',
"query": searchQuery,
"done": True,
"error": True,
},
}
)
if all_results:
urls = []
for results in all_results:
if "filenames" in results:
urls.extend(results["filenames"])
await event_emitter(
{
"type": "status",
"data": {
"action": "web_search",
"description": "Searched {{count}} sites",
"urls": urls,
"done": True,
},
}
)
else:
await event_emitter(
{
"type": "status",
"data": {
"action": "web_search",
"description": "No search results found",
"done": True,
"error": True,
},
}
)
return form_data
async def chat_image_generation_handler(
request: Request, form_data: dict, extra_params: dict, user
):
__event_emitter__ = extra_params["__event_emitter__"]
await __event_emitter__(
{
"type": "status",
"data": {"description": "Generating an image", "done": False},
}
)
messages = form_data["messages"]
user_message = get_last_user_message(messages)
prompt = user_message
negative_prompt = ""
if request.app.state.config.ENABLE_IMAGE_PROMPT_GENERATION:
try:
res = await generate_image_prompt(
request,
{
"model": form_data["model"],
"messages": messages,
},
user,
)
response = res["choices"][0]["message"]["content"]
try:
bracket_start = response.find("{")
bracket_end = response.rfind("}") + 1
if bracket_start == -1 or bracket_end == -1:
raise Exception("No JSON object found in the response")
response = response[bracket_start:bracket_end]
response = json.loads(response)
prompt = response.get("prompt", [])
except Exception as e:
prompt = user_message
except Exception as e:
log.exception(e)
prompt = user_message
system_message_content = ""
try:
images = await image_generations(
request=request,
form_data=GenerateImageForm(**{"prompt": prompt}),
user=user,
)
await __event_emitter__(
{
"type": "status",
"data": {"description": "Generated an image", "done": True},
}
)
for image in images:
await __event_emitter__(
{
"type": "message",
"data": {"content": f"\n"},
}
)
system_message_content = "User is shown the generated image, tell the user that the image has been generated"
except Exception as e:
log.exception(e)
await __event_emitter__(
{
"type": "status",
"data": {
"description": f"An error occurred while generating an image",
"done": True,
},
}
)
system_message_content = "Unable to generate an image, tell the user that an error occurred"
if system_message_content:
form_data["messages"] = add_or_update_system_message(
system_message_content, form_data["messages"]
)
return form_data
async def chat_completion_files_handler(
request: Request, body: dict, user: UserModel
) -> tuple[dict, dict[str, list]]:
sources = []
if files := body.get("metadata", {}).get("files", None):
try:
queries_response = await generate_queries(
request,
{
"model": body["model"],
"messages": body["messages"],
"type": "retrieval",
},
user,
)
queries_response = queries_response["choices"][0]["message"]["content"]
try:
bracket_start = queries_response.find("{")
bracket_end = queries_response.rfind("}") + 1
if bracket_start == -1 or bracket_end == -1:
raise Exception("No JSON object found in the response")
queries_response = queries_response[bracket_start:bracket_end]
queries_response = json.loads(queries_response)
except Exception as e:
queries_response = {"queries": [queries_response]}
queries = queries_response.get("queries", [])
except Exception as e:
queries = []
if len(queries) == 0:
queries = [get_last_user_message(body["messages"])]
try:
# Offload get_sources_from_files to a separate thread
loop = asyncio.get_running_loop()
with ThreadPoolExecutor() as executor:
sources = await loop.run_in_executor(
executor,
lambda: get_sources_from_files(
files=files,
queries=queries,
embedding_function=lambda query: request.app.state.EMBEDDING_FUNCTION(
query, user=user
),
k=request.app.state.config.TOP_K,
reranking_function=request.app.state.rf,
r=request.app.state.config.RELEVANCE_THRESHOLD,
hybrid_search=request.app.state.config.ENABLE_RAG_HYBRID_SEARCH,
full_context=request.app.state.config.RAG_FULL_CONTEXT,
),
)
except Exception as e:
log.exception(e)
log.debug(f"rag_contexts:sources: {sources}")
return body, {"sources": sources}
def apply_params_to_form_data(form_data, model):
params = form_data.pop("params", {})
if model.get("ollama"):
form_data["options"] = params
if "format" in params:
form_data["format"] = params["format"]
if "keep_alive" in params:
form_data["keep_alive"] = params["keep_alive"]
else:
if "seed" in params:
form_data["seed"] = params["seed"]
if "stop" in params:
form_data["stop"] = params["stop"]
if "temperature" in params:
form_data["temperature"] = params["temperature"]
if "max_tokens" in params:
form_data["max_tokens"] = params["max_tokens"]
if "top_p" in params:
form_data["top_p"] = params["top_p"]
if "frequency_penalty" in params:
form_data["frequency_penalty"] = params["frequency_penalty"]
if "reasoning_effort" in params:
form_data["reasoning_effort"] = params["reasoning_effort"]
return form_data
async def process_chat_payload(request, form_data, metadata, user, model):
form_data = apply_params_to_form_data(form_data, model)
log.debug(f"form_data: {form_data}")
event_emitter = get_event_emitter(metadata)
event_call = get_event_call(metadata)
extra_params = {
"__event_emitter__": event_emitter,
"__event_call__": event_call,
"__user__": {
"id": user.id,
"email": user.email,
"name": user.name,
"role": user.role,
},
"__metadata__": metadata,
"__request__": request,
"__model__": model,
}
# Initialize events to store additional event to be sent to the client
# Initialize contexts and citation
if getattr(request.state, "direct", False) and hasattr(request.state, "model"):
models = {
request.state.model["id"]: request.state.model,
}
else:
models = request.app.state.MODELS
task_model_id = get_task_model_id(
form_data["model"],
request.app.state.config.TASK_MODEL,
request.app.state.config.TASK_MODEL_EXTERNAL,
models,
)
events = []
sources = []
user_message = get_last_user_message(form_data["messages"])
model_knowledge = model.get("info", {}).get("meta", {}).get("knowledge", False)
if model_knowledge:
await event_emitter(
{
"type": "status",
"data": {
"action": "knowledge_search",
"query": user_message,
"done": False,
},
}
)
knowledge_files = []
for item in model_knowledge:
if item.get("collection_name"):
knowledge_files.append(
{
"id": item.get("collection_name"),
"name": item.get("name"),
"legacy": True,
}
)
elif item.get("collection_names"):
knowledge_files.append(
{
"name": item.get("name"),
"type": "collection",
"collection_names": item.get("collection_names"),
"legacy": True,
}
)
else:
knowledge_files.append(item)
files = form_data.get("files", [])
files.extend(knowledge_files)
form_data["files"] = files
variables = form_data.pop("variables", None)
# Process the form_data through the pipeline
try:
form_data = await process_pipeline_inlet_filter(
request, form_data, user, models
)
except Exception as e:
raise e
try:
form_data, flags = await process_filter_functions(
request=request,
filter_ids=get_sorted_filter_ids(model),
filter_type="inlet",
form_data=form_data,
extra_params=extra_params,
)
except Exception as e:
raise Exception(f"Error: {e}")
features = form_data.pop("features", None)
if features:
if "web_search" in features and features["web_search"]:
form_data = await chat_web_search_handler(
request, form_data, extra_params, user
)
if "image_generation" in features and features["image_generation"]:
form_data = await chat_image_generation_handler(
request, form_data, extra_params, user
)
if "code_interpreter" in features and features["code_interpreter"]:
form_data["messages"] = add_or_update_user_message(
(
request.app.state.config.CODE_INTERPRETER_PROMPT_TEMPLATE
if request.app.state.config.CODE_INTERPRETER_PROMPT_TEMPLATE != ""
else DEFAULT_CODE_INTERPRETER_PROMPT
),
form_data["messages"],
)
tool_ids = form_data.pop("tool_ids", None)
files = form_data.pop("files", None)
# Remove files duplicates
if files:
files = list({json.dumps(f, sort_keys=True): f for f in files}.values())
metadata = {
**metadata,
"tool_ids": tool_ids,
"files": files,
}
form_data["metadata"] = metadata
tool_ids = metadata.get("tool_ids", None)
log.debug(f"{tool_ids=}")
if tool_ids:
# If tool_ids field is present, then get the tools
tools = get_tools(
request,
tool_ids,
user,
{
**extra_params,
"__model__": models[task_model_id],
"__messages__": form_data["messages"],
"__files__": metadata.get("files", []),
},
)
log.info(f"{tools=}")
if metadata.get("function_calling") == "native":
# If the function calling is native, then call the tools function calling handler
metadata["tools"] = tools
form_data["tools"] = [
{"type": "function", "function": tool.get("spec", {})}
for tool in tools.values()
]
else:
# If the function calling is not native, then call the tools function calling handler
try:
form_data, flags = await chat_completion_tools_handler(
request, form_data, user, models, tools
)
sources.extend(flags.get("sources", []))
except Exception as e:
log.exception(e)
try:
form_data, flags = await chat_completion_files_handler(request, form_data, user)
sources.extend(flags.get("sources", []))
except Exception as e:
log.exception(e)
# If context is not empty, insert it into the messages
if len(sources) > 0:
context_string = ""
for source_idx, source in enumerate(sources):
source_id = source.get("source", {}).get("name", "")
if "document" in source:
for doc_idx, doc_context in enumerate(source["document"]):
context_string += f"{source_idx}{doc_context}\n"
context_string = context_string.strip()
prompt = get_last_user_message(form_data["messages"])
if prompt is None:
raise Exception("No user message found")
if (
request.app.state.config.RELEVANCE_THRESHOLD == 0
and context_string.strip() == ""
):
log.debug(
f"With a 0 relevancy threshold for RAG, the context cannot be empty"
)
# Workaround for Ollama 2.0+ system prompt issue
# TODO: replace with add_or_update_system_message
if model.get("owned_by") == "ollama":
form_data["messages"] = prepend_to_first_user_message_content(
rag_template(
request.app.state.config.RAG_TEMPLATE, context_string, prompt
),
form_data["messages"],
)
else:
form_data["messages"] = add_or_update_system_message(
rag_template(
request.app.state.config.RAG_TEMPLATE, context_string, prompt
),
form_data["messages"],
)
# If there are citations, add them to the data_items
sources = [source for source in sources if source.get("source", {}).get("name", "")]
if len(sources) > 0:
events.append({"sources": sources})
if model_knowledge:
await event_emitter(
{
"type": "status",
"data": {
"action": "knowledge_search",
"query": user_message,
"done": True,
"hidden": True,
},
}
)
return form_data, metadata, events
async def process_chat_response(
request, response, form_data, user, events, metadata, tasks
):
async def background_tasks_handler():
message_map = Chats.get_messages_by_chat_id(metadata["chat_id"])
message = message_map.get(metadata["message_id"]) if message_map else None
if message:
messages = get_message_list(message_map, message.get("id"))
if tasks and messages:
if TASKS.TITLE_GENERATION in tasks:
if tasks[TASKS.TITLE_GENERATION]:
res = await generate_title(
request,
{
"model": message["model"],
"messages": messages,
"chat_id": metadata["chat_id"],
},
user,
)
if res and isinstance(res, dict):
if len(res.get("choices", [])) == 1:
title_string = (
res.get("choices", [])[0]
.get("message", {})
.get("content", message.get("content", "New Chat"))
)
else:
title_string = ""
title_string = title_string[
title_string.find("{") : title_string.rfind("}") + 1
]
try:
title = json.loads(title_string).get(
"title", "New Chat"
)
except Exception as e:
title = ""
if not title:
title = messages[0].get("content", "New Chat")
Chats.update_chat_title_by_id(metadata["chat_id"], title)
await event_emitter(
{
"type": "chat:title",
"data": title,
}
)
elif len(messages) == 2:
title = messages[0].get("content", "New Chat")
Chats.update_chat_title_by_id(metadata["chat_id"], title)
await event_emitter(
{
"type": "chat:title",
"data": message.get("content", "New Chat"),
}
)
if TASKS.TAGS_GENERATION in tasks and tasks[TASKS.TAGS_GENERATION]:
res = await generate_chat_tags(
request,
{
"model": message["model"],
"messages": messages,
"chat_id": metadata["chat_id"],
},
user,
)
if res and isinstance(res, dict):
if len(res.get("choices", [])) == 1:
tags_string = (
res.get("choices", [])[0]
.get("message", {})
.get("content", "")
)
else:
tags_string = ""
tags_string = tags_string[
tags_string.find("{") : tags_string.rfind("}") + 1
]
try:
tags = json.loads(tags_string).get("tags", [])
Chats.update_chat_tags_by_id(
metadata["chat_id"], tags, user
)
await event_emitter(
{
"type": "chat:tags",
"data": tags,
}
)
except Exception as e:
pass
event_emitter = None
event_caller = None
if (
"session_id" in metadata
and metadata["session_id"]
and "chat_id" in metadata
and metadata["chat_id"]
and "message_id" in metadata
and metadata["message_id"]
):
event_emitter = get_event_emitter(metadata)
event_caller = get_event_call(metadata)
# Non-streaming response
if not isinstance(response, StreamingResponse):
if event_emitter:
if "selected_model_id" in response:
Chats.upsert_message_to_chat_by_id_and_message_id(
metadata["chat_id"],
metadata["message_id"],
{
"selectedModelId": response["selected_model_id"],
},
)
if response.get("choices", [])[0].get("message", {}).get("content"):
content = response["choices"][0]["message"]["content"]
if content:
await event_emitter(
{
"type": "chat:completion",
"data": response,
}
)
title = Chats.get_chat_title_by_id(metadata["chat_id"])
await event_emitter(
{
"type": "chat:completion",
"data": {
"done": True,
"content": content,
"title": title,
},
}
)
# Save message in the database
Chats.upsert_message_to_chat_by_id_and_message_id(
metadata["chat_id"],
metadata["message_id"],
{
"content": content,
},
)
# Send a webhook notification if the user is not active
if get_active_status_by_user_id(user.id) is None:
webhook_url = Users.get_user_webhook_url_by_id(user.id)
if webhook_url:
post_webhook(
request.app.state.WEBUI_NAME,
webhook_url,
f"{title} - {request.app.state.config.WEBUI_URL}/c/{metadata['chat_id']}\n\n{content}",
{
"action": "chat",
"message": content,
"title": title,
"url": f"{request.app.state.config.WEBUI_URL}/c/{metadata['chat_id']}",
},
)
await background_tasks_handler()
return response
else:
return response
# Non standard response
if not any(
content_type in response.headers["Content-Type"]
for content_type in ["text/event-stream", "application/x-ndjson"]
):
return response
# Streaming response
if event_emitter and event_caller:
task_id = str(uuid4()) # Create a unique task ID.
model_id = form_data.get("model", "")
Chats.upsert_message_to_chat_by_id_and_message_id(
metadata["chat_id"],
metadata["message_id"],
{
"model": model_id,
},
)
def split_content_and_whitespace(content):
content_stripped = content.rstrip()
original_whitespace = (
content[len(content_stripped) :]
if len(content) > len(content_stripped)
else ""
)
return content_stripped, original_whitespace
def is_opening_code_block(content):
backtick_segments = content.split("```")
# Even number of segments means the last backticks are opening a new block
return len(backtick_segments) > 1 and len(backtick_segments) % 2 == 0
# Handle as a background task
async def post_response_handler(response, events):
def serialize_content_blocks(content_blocks, raw=False):
content = ""
for block in content_blocks:
if block["type"] == "text":
content = f"{content}{block['content'].strip()}\n"
elif block["type"] == "tool_calls":
attributes = block.get("attributes", {})
block_content = block.get("content", [])
results = block.get("results", [])
if results:
result_display_content = ""
for result in results:
tool_call_id = result.get("tool_call_id", "")
tool_name = ""
for tool_call in block_content:
if tool_call.get("id", "") == tool_call_id:
tool_name = tool_call.get("function", {}).get(
"name", ""
)
break
result_display_content = f"{result_display_content}\n> {tool_name}: {result.get('content', '')}"
if not raw:
content = f'{content}\n\nTool Executed
\n{result_display_content}\n \n'
else:
tool_calls_display_content = ""
for tool_call in block_content:
tool_calls_display_content = f"{tool_calls_display_content}\n> Executing {tool_call.get('function', {}).get('name', '')}"
if not raw:
content = f'{content}\n\nTool Executing...
\n{tool_calls_display_content}\n \n'
elif block["type"] == "reasoning":
reasoning_display_content = "\n".join(
(f"> {line}" if not line.startswith(">") else line)
for line in block["content"].splitlines()
)
reasoning_duration = block.get("duration", None)
if reasoning_duration is not None:
if raw:
content = f'{content}\n<{block["tag"]}>{block["content"]}{block["tag"]}>\n'
else:
content = f'{content}\n\nThought for {reasoning_duration} seconds
\n{reasoning_display_content}\n \n'
else:
if raw:
content = f'{content}\n<{block["tag"]}>{block["content"]}{block["tag"]}>\n'
else:
content = f'{content}\n\nThinking…
\n{reasoning_display_content}\n \n'
elif block["type"] == "code_interpreter":
attributes = block.get("attributes", {})
output = block.get("output", None)
lang = attributes.get("lang", "")
content_stripped, original_whitespace = (
split_content_and_whitespace(content)
)
if is_opening_code_block(content_stripped):
# Remove trailing backticks that would open a new block
content = (
content_stripped.rstrip("`").rstrip()
+ original_whitespace
)
else:
# Keep content as is - either closing backticks or no backticks
content = content_stripped + original_whitespace
if output:
output = html.escape(json.dumps(output))
if raw:
content = f'{content}\n\n{block["content"]}\n\n```output\n{output}\n```\n'
else:
content = f'{content}\n\nAnalyzed
\n```{lang}\n{block["content"]}\n```\n \n'
else:
if raw:
content = f'{content}\n\n{block["content"]}\n\n'
else:
content = f'{content}\n\nAnalyzing...
\n```{lang}\n{block["content"]}\n```\n \n'
else:
block_content = str(block["content"]).strip()
content = f"{content}{block['type']}: {block_content}\n"
return content.strip()
def convert_content_blocks_to_messages(content_blocks):
messages = []
temp_blocks = []
for idx, block in enumerate(content_blocks):
if block["type"] == "tool_calls":
messages.append(
{
"role": "assistant",
"content": serialize_content_blocks(temp_blocks),
"tool_calls": block.get("content"),
}
)
results = block.get("results", [])
for result in results:
messages.append(
{
"role": "tool",
"tool_call_id": result["tool_call_id"],
"content": result["content"],
}
)
temp_blocks = []
else:
temp_blocks.append(block)
if temp_blocks:
content = serialize_content_blocks(temp_blocks)
if content:
messages.append(
{
"role": "assistant",
"content": content,
}
)
return messages
def tag_content_handler(content_type, tags, content, content_blocks):
end_flag = False
def extract_attributes(tag_content):
"""Extract attributes from a tag if they exist."""
attributes = {}
if not tag_content: # Ensure tag_content is not None
return attributes
# Match attributes in the format: key="value" (ignores single quotes for simplicity)
matches = re.findall(r'(\w+)\s*=\s*"([^"]+)"', tag_content)
for key, value in matches:
attributes[key] = value
return attributes
if content_blocks[-1]["type"] == "text":
for tag in tags:
# Match start tag e.g., or
start_tag_pattern = rf"<{tag}(\s.*?)?>"
match = re.search(start_tag_pattern, content)
if match:
attr_content = (
match.group(1) if match.group(1) else ""
) # Ensure it's not None
attributes = extract_attributes(
attr_content
) # Extract attributes safely
# Capture everything before and after the matched tag
before_tag = content[
: match.start()
] # Content before opening tag
after_tag = content[
match.end() :
] # Content after opening tag
# Remove the start tag and after from the currently handling text block
content_blocks[-1]["content"] = content_blocks[-1][
"content"
].replace(match.group(0) + after_tag, "")
if before_tag:
content_blocks[-1]["content"] = before_tag
if not content_blocks[-1]["content"]:
content_blocks.pop()
# Append the new block
content_blocks.append(
{
"type": content_type,
"tag": tag,
"attributes": attributes,
"content": "",
"started_at": time.time(),
}
)
if after_tag:
content_blocks[-1]["content"] = after_tag
break
elif content_blocks[-1]["type"] == content_type:
tag = content_blocks[-1]["tag"]
# Match end tag e.g.,
end_tag_pattern = rf"{tag}>"
# Check if the content has the end tag
if re.search(end_tag_pattern, content):
end_flag = True
block_content = content_blocks[-1]["content"]
# Strip start and end tags from the content
start_tag_pattern = rf"<{tag}(.*?)>"
block_content = re.sub(
start_tag_pattern, "", block_content
).strip()
end_tag_regex = re.compile(end_tag_pattern, re.DOTALL)
split_content = end_tag_regex.split(block_content, maxsplit=1)
# Content inside the tag
block_content = (
split_content[0].strip() if split_content else ""
)
# Leftover content (everything after ``)
leftover_content = (
split_content[1].strip() if len(split_content) > 1 else ""
)
if block_content:
content_blocks[-1]["content"] = block_content
content_blocks[-1]["ended_at"] = time.time()
content_blocks[-1]["duration"] = int(
content_blocks[-1]["ended_at"]
- content_blocks[-1]["started_at"]
)
# Reset the content_blocks by appending a new text block
if content_type != "code_interpreter":
if leftover_content:
content_blocks.append(
{
"type": "text",
"content": leftover_content,
}
)
else:
content_blocks.append(
{
"type": "text",
"content": "",
}
)
else:
# Remove the block if content is empty
content_blocks.pop()
if leftover_content:
content_blocks.append(
{
"type": "text",
"content": leftover_content,
}
)
else:
content_blocks.append(
{
"type": "text",
"content": "",
}
)
# Clean processed content
content = re.sub(
rf"<{tag}(.*?)>(.|\n)*?{tag}>",
"",
content,
flags=re.DOTALL,
)
return content, content_blocks, end_flag
message = Chats.get_message_by_id_and_message_id(
metadata["chat_id"], metadata["message_id"]
)
tool_calls = []
last_assistant_message = None
try:
if form_data["messages"][-1]["role"] == "assistant":
last_assistant_message = get_last_assistant_message(
form_data["messages"]
)
except Exception as e:
pass
content = (
message.get("content", "")
if message
else last_assistant_message if last_assistant_message else ""
)
content_blocks = [
{
"type": "text",
"content": content,
}
]
# We might want to disable this by default
DETECT_REASONING = True
DETECT_CODE_INTERPRETER = metadata.get("features", {}).get(
"code_interpreter", False
)
reasoning_tags = [
"think",
"thinking",
"reason",
"reasoning",
"thought",
"Thought",
]
code_interpreter_tags = ["code_interpreter"]
try:
for event in events:
await event_emitter(
{
"type": "chat:completion",
"data": event,
}
)
# Save message in the database
Chats.upsert_message_to_chat_by_id_and_message_id(
metadata["chat_id"],
metadata["message_id"],
{
**event,
},
)
async def stream_body_handler(response):
nonlocal content
nonlocal content_blocks
response_tool_calls = []
async for line in response.body_iterator:
line = line.decode("utf-8") if isinstance(line, bytes) else line
data = line
# Skip empty lines
if not data.strip():
continue
# "data:" is the prefix for each event
if not data.startswith("data:"):
continue
# Remove the prefix
data = data[len("data:") :].strip()
try:
data = json.loads(data)
if "selected_model_id" in data:
model_id = data["selected_model_id"]
Chats.upsert_message_to_chat_by_id_and_message_id(
metadata["chat_id"],
metadata["message_id"],
{
"selectedModelId": model_id,
},
)
else:
choices = data.get("choices", [])
if not choices:
continue
delta = choices[0].get("delta", {})
delta_tool_calls = delta.get("tool_calls", None)
if delta_tool_calls:
for delta_tool_call in delta_tool_calls:
tool_call_index = delta_tool_call.get("index")
if tool_call_index is not None:
if (
len(response_tool_calls)
<= tool_call_index
):
response_tool_calls.append(
delta_tool_call
)
else:
delta_name = delta_tool_call.get(
"function", {}
).get("name")
delta_arguments = delta_tool_call.get(
"function", {}
).get("arguments")
if delta_name:
response_tool_calls[
tool_call_index
]["function"]["name"] += delta_name
if delta_arguments:
response_tool_calls[
tool_call_index
]["function"][
"arguments"
] += delta_arguments
value = delta.get("content")
if value:
content = f"{content}{value}"
if not content_blocks:
content_blocks.append(
{
"type": "text",
"content": "",
}
)
content_blocks[-1]["content"] = (
content_blocks[-1]["content"] + value
)
if DETECT_REASONING:
content, content_blocks, _ = (
tag_content_handler(
"reasoning",
reasoning_tags,
content,
content_blocks,
)
)
if DETECT_CODE_INTERPRETER:
content, content_blocks, end = (
tag_content_handler(
"code_interpreter",
code_interpreter_tags,
content,
content_blocks,
)
)
if end:
break
if ENABLE_REALTIME_CHAT_SAVE:
# Save message in the database
Chats.upsert_message_to_chat_by_id_and_message_id(
metadata["chat_id"],
metadata["message_id"],
{
"content": serialize_content_blocks(
content_blocks
),
},
)
else:
data = {
"content": serialize_content_blocks(
content_blocks
),
}
await event_emitter(
{
"type": "chat:completion",
"data": data,
}
)
except Exception as e:
done = "data: [DONE]" in line
if done:
pass
else:
log.debug("Error: ", e)
continue
if content_blocks:
# Clean up the last text block
if content_blocks[-1]["type"] == "text":
content_blocks[-1]["content"] = content_blocks[-1][
"content"
].strip()
if not content_blocks[-1]["content"]:
content_blocks.pop()
if not content_blocks:
content_blocks.append(
{
"type": "text",
"content": "",
}
)
if response_tool_calls:
tool_calls.append(response_tool_calls)
if response.background:
await response.background()
await stream_body_handler(response)
MAX_TOOL_CALL_RETRIES = 5
tool_call_retries = 0
while len(tool_calls) > 0 and tool_call_retries < MAX_TOOL_CALL_RETRIES:
tool_call_retries += 1
response_tool_calls = tool_calls.pop(0)
content_blocks.append(
{
"type": "tool_calls",
"content": response_tool_calls,
}
)
await event_emitter(
{
"type": "chat:completion",
"data": {
"content": serialize_content_blocks(content_blocks),
},
}
)
tools = metadata.get("tools", {})
results = []
for tool_call in response_tool_calls:
tool_call_id = tool_call.get("id", "")
tool_name = tool_call.get("function", {}).get("name", "")
tool_function_params = {}
try:
# json.loads cannot be used because some models do not produce valid JSON
tool_function_params = ast.literal_eval(
tool_call.get("function", {}).get("arguments", "{}")
)
except Exception as e:
log.debug(e)
tool_result = None
if tool_name in tools:
tool = tools[tool_name]
spec = tool.get("spec", {})
try:
required_params = spec.get("parameters", {}).get(
"required", []
)
tool_function = tool["callable"]
tool_function_params = {
k: v
for k, v in tool_function_params.items()
if k in required_params
}
tool_result = await tool_function(
**tool_function_params
)
except Exception as e:
tool_result = str(e)
results.append(
{
"tool_call_id": tool_call_id,
"content": tool_result,
}
)
content_blocks[-1]["results"] = results
content_blocks.append(
{
"type": "text",
"content": "",
}
)
await event_emitter(
{
"type": "chat:completion",
"data": {
"content": serialize_content_blocks(content_blocks),
},
}
)
try:
res = await generate_chat_completion(
request,
{
"model": model_id,
"stream": True,
"tools": form_data["tools"],
"messages": [
*form_data["messages"],
*convert_content_blocks_to_messages(content_blocks),
],
},
user,
)
if isinstance(res, StreamingResponse):
await stream_body_handler(res)
else:
break
except Exception as e:
log.debug(e)
break
if DETECT_CODE_INTERPRETER:
MAX_RETRIES = 5
retries = 0
while (
content_blocks[-1]["type"] == "code_interpreter"
and retries < MAX_RETRIES
):
await event_emitter(
{
"type": "chat:completion",
"data": {
"content": serialize_content_blocks(content_blocks),
},
}
)
retries += 1
log.debug(f"Attempt count: {retries}")
output = ""
try:
if content_blocks[-1]["attributes"].get("type") == "code":
code = content_blocks[-1]["content"]
if (
request.app.state.config.CODE_INTERPRETER_ENGINE
== "pyodide"
):
output = await event_caller(
{
"type": "execute:python",
"data": {
"id": str(uuid4()),
"code": code,
"session_id": metadata.get(
"session_id", None
),
},
}
)
elif (
request.app.state.config.CODE_INTERPRETER_ENGINE
== "jupyter"
):
output = await execute_code_jupyter(
request.app.state.config.CODE_INTERPRETER_JUPYTER_URL,
code,
(
request.app.state.config.CODE_INTERPRETER_JUPYTER_AUTH_TOKEN
if request.app.state.config.CODE_INTERPRETER_JUPYTER_AUTH
== "token"
else None
),
(
request.app.state.config.CODE_INTERPRETER_JUPYTER_AUTH_PASSWORD
if request.app.state.config.CODE_INTERPRETER_JUPYTER_AUTH
== "password"
else None
),
request.app.state.config.CODE_INTERPRETER_JUPYTER_TIMEOUT,
)
else:
output = {
"stdout": "Code interpreter engine not configured."
}
log.debug(f"Code interpreter output: {output}")
if isinstance(output, dict):
stdout = output.get("stdout", "")
if isinstance(stdout, str):
stdoutLines = stdout.split("\n")
for idx, line in enumerate(stdoutLines):
if "data:image/png;base64" in line:
id = str(uuid4())
# ensure the path exists
os.makedirs(
os.path.join(CACHE_DIR, "images"),
exist_ok=True,
)
image_path = os.path.join(
CACHE_DIR,
f"images/{id}.png",
)
with open(image_path, "wb") as f:
f.write(
base64.b64decode(
line.split(",")[1]
)
)
stdoutLines[idx] = (
f""
)
output["stdout"] = "\n".join(stdoutLines)
result = output.get("result", "")
if isinstance(result, str):
resultLines = result.split("\n")
for idx, line in enumerate(resultLines):
if "data:image/png;base64" in line:
id = str(uuid4())
# ensure the path exists
os.makedirs(
os.path.join(CACHE_DIR, "images"),
exist_ok=True,
)
image_path = os.path.join(
CACHE_DIR,
f"images/{id}.png",
)
with open(image_path, "wb") as f:
f.write(
base64.b64decode(
line.split(",")[1]
)
)
resultLines[idx] = (
f""
)
output["result"] = "\n".join(resultLines)
except Exception as e:
output = str(e)
content_blocks[-1]["output"] = output
content_blocks.append(
{
"type": "text",
"content": "",
}
)
await event_emitter(
{
"type": "chat:completion",
"data": {
"content": serialize_content_blocks(content_blocks),
},
}
)
print(content_blocks, serialize_content_blocks(content_blocks))
try:
res = await generate_chat_completion(
request,
{
"model": model_id,
"stream": True,
"messages": [
*form_data["messages"],
{
"role": "assistant",
"content": serialize_content_blocks(
content_blocks, raw=True
),
},
],
},
user,
)
if isinstance(res, StreamingResponse):
await stream_body_handler(res)
else:
break
except Exception as e:
log.debug(e)
break
title = Chats.get_chat_title_by_id(metadata["chat_id"])
data = {
"done": True,
"content": serialize_content_blocks(content_blocks),
"title": title,
}
if not ENABLE_REALTIME_CHAT_SAVE:
# Save message in the database
Chats.upsert_message_to_chat_by_id_and_message_id(
metadata["chat_id"],
metadata["message_id"],
{
"content": serialize_content_blocks(content_blocks),
},
)
# Send a webhook notification if the user is not active
if get_active_status_by_user_id(user.id) is None:
webhook_url = Users.get_user_webhook_url_by_id(user.id)
if webhook_url:
post_webhook(
request.app.state.WEBUI_NAME,
webhook_url,
f"{title} - {request.app.state.config.WEBUI_URL}/c/{metadata['chat_id']}\n\n{content}",
{
"action": "chat",
"message": content,
"title": title,
"url": f"{request.app.state.config.WEBUI_URL}/c/{metadata['chat_id']}",
},
)
await event_emitter(
{
"type": "chat:completion",
"data": data,
}
)
await background_tasks_handler()
except asyncio.CancelledError:
print("Task was cancelled!")
await event_emitter({"type": "task-cancelled"})
if not ENABLE_REALTIME_CHAT_SAVE:
# Save message in the database
Chats.upsert_message_to_chat_by_id_and_message_id(
metadata["chat_id"],
metadata["message_id"],
{
"content": serialize_content_blocks(content_blocks),
},
)
if response.background is not None:
await response.background()
# background_tasks.add_task(post_response_handler, response, events)
task_id, _ = create_task(post_response_handler(response, events))
return {"status": True, "task_id": task_id}
else:
# Fallback to the original response
async def stream_wrapper(original_generator, events):
def wrap_item(item):
return f"data: {item}\n\n"
for event in events:
yield wrap_item(json.dumps(event))
async for data in original_generator:
yield data
return StreamingResponse(
stream_wrapper(response.body_iterator, events),
headers=dict(response.headers),
background=response.background,
)