import time import logging import sys import os import base64 import asyncio from aiocache import cached from typing import Any, Optional import random import json import html import inspect import re import ast from uuid import uuid4 from concurrent.futures import ThreadPoolExecutor from fastapi import Request from fastapi import BackgroundTasks from starlette.responses import Response, StreamingResponse from open_webui.models.chats import Chats from open_webui.models.users import Users from open_webui.socket.main import ( get_event_call, get_event_emitter, get_active_status_by_user_id, ) from open_webui.routers.tasks import ( generate_queries, generate_title, generate_image_prompt, generate_chat_tags, ) from open_webui.routers.retrieval import process_web_search, SearchForm from open_webui.routers.images import image_generations, GenerateImageForm from open_webui.routers.pipelines import ( process_pipeline_inlet_filter, process_pipeline_outlet_filter, ) from open_webui.utils.webhook import post_webhook from open_webui.models.users import UserModel from open_webui.models.functions import Functions from open_webui.models.models import Models from open_webui.retrieval.utils import get_sources_from_files from open_webui.utils.chat import generate_chat_completion from open_webui.utils.task import ( get_task_model_id, rag_template, tools_function_calling_generation_template, ) from open_webui.utils.misc import ( deep_update, get_message_list, add_or_update_system_message, add_or_update_user_message, get_last_user_message, get_last_assistant_message, prepend_to_first_user_message_content, ) from open_webui.utils.tools import get_tools from open_webui.utils.plugin import load_function_module_by_id from open_webui.utils.filter import ( get_sorted_filter_ids, process_filter_functions, ) from open_webui.utils.code_interpreter import execute_code_jupyter from open_webui.tasks import create_task from open_webui.config import ( CACHE_DIR, DEFAULT_TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE, DEFAULT_CODE_INTERPRETER_PROMPT, ) from open_webui.env import ( SRC_LOG_LEVELS, GLOBAL_LOG_LEVEL, BYPASS_MODEL_ACCESS_CONTROL, ENABLE_REALTIME_CHAT_SAVE, ) from open_webui.constants import TASKS logging.basicConfig(stream=sys.stdout, level=GLOBAL_LOG_LEVEL) log = logging.getLogger(__name__) log.setLevel(SRC_LOG_LEVELS["MAIN"]) async def chat_completion_tools_handler( request: Request, body: dict, user: UserModel, models, tools ) -> tuple[dict, dict]: async def get_content_from_response(response) -> Optional[str]: content = None if hasattr(response, "body_iterator"): async for chunk in response.body_iterator: data = json.loads(chunk.decode("utf-8")) content = data["choices"][0]["message"]["content"] # Cleanup any remaining background tasks if necessary if response.background is not None: await response.background() else: content = response["choices"][0]["message"]["content"] return content def get_tools_function_calling_payload(messages, task_model_id, content): user_message = get_last_user_message(messages) history = "\n".join( f"{message['role'].upper()}: \"\"\"{message['content']}\"\"\"" for message in messages[::-1][:4] ) prompt = f"History:\n{history}\nQuery: {user_message}" return { "model": task_model_id, "messages": [ {"role": "system", "content": content}, {"role": "user", "content": f"Query: {prompt}"}, ], "stream": False, "metadata": {"task": str(TASKS.FUNCTION_CALLING)}, } task_model_id = get_task_model_id( body["model"], request.app.state.config.TASK_MODEL, request.app.state.config.TASK_MODEL_EXTERNAL, models, ) skip_files = False sources = [] specs = [tool["spec"] for tool in tools.values()] tools_specs = json.dumps(specs) if request.app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE != "": template = request.app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE else: template = DEFAULT_TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE tools_function_calling_prompt = tools_function_calling_generation_template( template, tools_specs ) log.info(f"{tools_function_calling_prompt=}") payload = get_tools_function_calling_payload( body["messages"], task_model_id, tools_function_calling_prompt ) try: response = await generate_chat_completion(request, form_data=payload, user=user) log.debug(f"{response=}") content = await get_content_from_response(response) log.debug(f"{content=}") if not content: return body, {} try: content = content[content.find("{") : content.rfind("}") + 1] if not content: raise Exception("No JSON object found in the response") result = json.loads(content) async def tool_call_handler(tool_call): nonlocal skip_files log.debug(f"{tool_call=}") tool_function_name = tool_call.get("name", None) if tool_function_name not in tools: return body, {} tool_function_params = tool_call.get("parameters", {}) try: required_params = ( tools[tool_function_name] .get("spec", {}) .get("parameters", {}) .get("required", []) ) tool_function = tools[tool_function_name]["callable"] tool_function_params = { k: v for k, v in tool_function_params.items() if k in required_params } tool_output = await tool_function(**tool_function_params) except Exception as e: tool_output = str(e) if isinstance(tool_output, str): if tools[tool_function_name]["citation"]: sources.append( { "source": { "name": f"TOOL:{tools[tool_function_name]['toolkit_id']}/{tool_function_name}" }, "document": [tool_output], "metadata": [ { "source": f"TOOL:{tools[tool_function_name]['toolkit_id']}/{tool_function_name}" } ], } ) else: sources.append( { "source": {}, "document": [tool_output], "metadata": [ { "source": f"TOOL:{tools[tool_function_name]['toolkit_id']}/{tool_function_name}" } ], } ) if tools[tool_function_name]["file_handler"]: skip_files = True # check if "tool_calls" in result if result.get("tool_calls"): for tool_call in result.get("tool_calls"): await tool_call_handler(tool_call) else: await tool_call_handler(result) except Exception as e: log.exception(f"Error: {e}") content = None except Exception as e: log.exception(f"Error: {e}") content = None log.debug(f"tool_contexts: {sources}") if skip_files and "files" in body.get("metadata", {}): del body["metadata"]["files"] return body, {"sources": sources} async def chat_web_search_handler( request: Request, form_data: dict, extra_params: dict, user ): event_emitter = extra_params["__event_emitter__"] await event_emitter( { "type": "status", "data": { "action": "web_search", "description": "Generating search query", "done": False, }, } ) messages = form_data["messages"] user_message = get_last_user_message(messages) queries = [] try: res = await generate_queries( request, { "model": form_data["model"], "messages": messages, "prompt": user_message, "type": "web_search", }, user, ) response = res["choices"][0]["message"]["content"] try: bracket_start = response.find("{") bracket_end = response.rfind("}") + 1 if bracket_start == -1 or bracket_end == -1: raise Exception("No JSON object found in the response") response = response[bracket_start:bracket_end] queries = json.loads(response) queries = queries.get("queries", []) except Exception as e: queries = [response] except Exception as e: log.exception(e) queries = [user_message] if len(queries) == 0: await event_emitter( { "type": "status", "data": { "action": "web_search", "description": "No search query generated", "done": True, }, } ) return form_data all_results = [] for searchQuery in queries: await event_emitter( { "type": "status", "data": { "action": "web_search", "description": 'Searching "{{searchQuery}}"', "query": searchQuery, "done": False, }, } ) try: results = await process_web_search( request, SearchForm( **{ "query": searchQuery, } ), user=user, ) if results: all_results.append(results) files = form_data.get("files", []) if request.app.state.config.RAG_WEB_SEARCH_FULL_CONTEXT: files.append( { "docs": results.get("docs", []), "name": searchQuery, "type": "web_search_docs", "urls": results["filenames"], } ) else: files.append( { "collection_name": results["collection_name"], "name": searchQuery, "type": "web_search_results", "urls": results["filenames"], } ) form_data["files"] = files except Exception as e: log.exception(e) await event_emitter( { "type": "status", "data": { "action": "web_search", "description": 'Error searching "{{searchQuery}}"', "query": searchQuery, "done": True, "error": True, }, } ) if all_results: urls = [] for results in all_results: if "filenames" in results: urls.extend(results["filenames"]) await event_emitter( { "type": "status", "data": { "action": "web_search", "description": "Searched {{count}} sites", "urls": urls, "done": True, }, } ) else: await event_emitter( { "type": "status", "data": { "action": "web_search", "description": "No search results found", "done": True, "error": True, }, } ) return form_data async def chat_image_generation_handler( request: Request, form_data: dict, extra_params: dict, user ): __event_emitter__ = extra_params["__event_emitter__"] await __event_emitter__( { "type": "status", "data": {"description": "Generating an image", "done": False}, } ) messages = form_data["messages"] user_message = get_last_user_message(messages) prompt = user_message negative_prompt = "" if request.app.state.config.ENABLE_IMAGE_PROMPT_GENERATION: try: res = await generate_image_prompt( request, { "model": form_data["model"], "messages": messages, }, user, ) response = res["choices"][0]["message"]["content"] try: bracket_start = response.find("{") bracket_end = response.rfind("}") + 1 if bracket_start == -1 or bracket_end == -1: raise Exception("No JSON object found in the response") response = response[bracket_start:bracket_end] response = json.loads(response) prompt = response.get("prompt", []) except Exception as e: prompt = user_message except Exception as e: log.exception(e) prompt = user_message system_message_content = "" try: images = await image_generations( request=request, form_data=GenerateImageForm(**{"prompt": prompt}), user=user, ) await __event_emitter__( { "type": "status", "data": {"description": "Generated an image", "done": True}, } ) for image in images: await __event_emitter__( { "type": "message", "data": {"content": f"![Generated Image]({image['url']})\n"}, } ) system_message_content = "User is shown the generated image, tell the user that the image has been generated" except Exception as e: log.exception(e) await __event_emitter__( { "type": "status", "data": { "description": f"An error occurred while generating an image", "done": True, }, } ) system_message_content = "Unable to generate an image, tell the user that an error occurred" if system_message_content: form_data["messages"] = add_or_update_system_message( system_message_content, form_data["messages"] ) return form_data async def chat_completion_files_handler( request: Request, body: dict, user: UserModel ) -> tuple[dict, dict[str, list]]: sources = [] if files := body.get("metadata", {}).get("files", None): try: queries_response = await generate_queries( request, { "model": body["model"], "messages": body["messages"], "type": "retrieval", }, user, ) queries_response = queries_response["choices"][0]["message"]["content"] try: bracket_start = queries_response.find("{") bracket_end = queries_response.rfind("}") + 1 if bracket_start == -1 or bracket_end == -1: raise Exception("No JSON object found in the response") queries_response = queries_response[bracket_start:bracket_end] queries_response = json.loads(queries_response) except Exception as e: queries_response = {"queries": [queries_response]} queries = queries_response.get("queries", []) except Exception as e: queries = [] if len(queries) == 0: queries = [get_last_user_message(body["messages"])] try: # Offload get_sources_from_files to a separate thread loop = asyncio.get_running_loop() with ThreadPoolExecutor() as executor: sources = await loop.run_in_executor( executor, lambda: get_sources_from_files( files=files, queries=queries, embedding_function=lambda query: request.app.state.EMBEDDING_FUNCTION( query, user=user ), k=request.app.state.config.TOP_K, reranking_function=request.app.state.rf, r=request.app.state.config.RELEVANCE_THRESHOLD, hybrid_search=request.app.state.config.ENABLE_RAG_HYBRID_SEARCH, full_context=request.app.state.config.RAG_FULL_CONTEXT, ), ) except Exception as e: log.exception(e) log.debug(f"rag_contexts:sources: {sources}") return body, {"sources": sources} def apply_params_to_form_data(form_data, model): params = form_data.pop("params", {}) if model.get("ollama"): form_data["options"] = params if "format" in params: form_data["format"] = params["format"] if "keep_alive" in params: form_data["keep_alive"] = params["keep_alive"] else: if "seed" in params: form_data["seed"] = params["seed"] if "stop" in params: form_data["stop"] = params["stop"] if "temperature" in params: form_data["temperature"] = params["temperature"] if "max_tokens" in params: form_data["max_tokens"] = params["max_tokens"] if "top_p" in params: form_data["top_p"] = params["top_p"] if "frequency_penalty" in params: form_data["frequency_penalty"] = params["frequency_penalty"] if "reasoning_effort" in params: form_data["reasoning_effort"] = params["reasoning_effort"] return form_data async def process_chat_payload(request, form_data, metadata, user, model): form_data = apply_params_to_form_data(form_data, model) log.debug(f"form_data: {form_data}") event_emitter = get_event_emitter(metadata) event_call = get_event_call(metadata) extra_params = { "__event_emitter__": event_emitter, "__event_call__": event_call, "__user__": { "id": user.id, "email": user.email, "name": user.name, "role": user.role, }, "__metadata__": metadata, "__request__": request, "__model__": model, } # Initialize events to store additional event to be sent to the client # Initialize contexts and citation if getattr(request.state, "direct", False) and hasattr(request.state, "model"): models = { request.state.model["id"]: request.state.model, } else: models = request.app.state.MODELS task_model_id = get_task_model_id( form_data["model"], request.app.state.config.TASK_MODEL, request.app.state.config.TASK_MODEL_EXTERNAL, models, ) events = [] sources = [] user_message = get_last_user_message(form_data["messages"]) model_knowledge = model.get("info", {}).get("meta", {}).get("knowledge", False) if model_knowledge: await event_emitter( { "type": "status", "data": { "action": "knowledge_search", "query": user_message, "done": False, }, } ) knowledge_files = [] for item in model_knowledge: if item.get("collection_name"): knowledge_files.append( { "id": item.get("collection_name"), "name": item.get("name"), "legacy": True, } ) elif item.get("collection_names"): knowledge_files.append( { "name": item.get("name"), "type": "collection", "collection_names": item.get("collection_names"), "legacy": True, } ) else: knowledge_files.append(item) files = form_data.get("files", []) files.extend(knowledge_files) form_data["files"] = files variables = form_data.pop("variables", None) # Process the form_data through the pipeline try: form_data = await process_pipeline_inlet_filter( request, form_data, user, models ) except Exception as e: raise e try: form_data, flags = await process_filter_functions( request=request, filter_ids=get_sorted_filter_ids(model), filter_type="inlet", form_data=form_data, extra_params=extra_params, ) except Exception as e: raise Exception(f"Error: {e}") features = form_data.pop("features", None) if features: if "web_search" in features and features["web_search"]: form_data = await chat_web_search_handler( request, form_data, extra_params, user ) if "image_generation" in features and features["image_generation"]: form_data = await chat_image_generation_handler( request, form_data, extra_params, user ) if "code_interpreter" in features and features["code_interpreter"]: form_data["messages"] = add_or_update_user_message( ( request.app.state.config.CODE_INTERPRETER_PROMPT_TEMPLATE if request.app.state.config.CODE_INTERPRETER_PROMPT_TEMPLATE != "" else DEFAULT_CODE_INTERPRETER_PROMPT ), form_data["messages"], ) tool_ids = form_data.pop("tool_ids", None) files = form_data.pop("files", None) # Remove files duplicates if files: files = list({json.dumps(f, sort_keys=True): f for f in files}.values()) metadata = { **metadata, "tool_ids": tool_ids, "files": files, } form_data["metadata"] = metadata tool_ids = metadata.get("tool_ids", None) log.debug(f"{tool_ids=}") if tool_ids: # If tool_ids field is present, then get the tools tools = get_tools( request, tool_ids, user, { **extra_params, "__model__": models[task_model_id], "__messages__": form_data["messages"], "__files__": metadata.get("files", []), }, ) log.info(f"{tools=}") if metadata.get("function_calling") == "native": # If the function calling is native, then call the tools function calling handler metadata["tools"] = tools form_data["tools"] = [ {"type": "function", "function": tool.get("spec", {})} for tool in tools.values() ] else: # If the function calling is not native, then call the tools function calling handler try: form_data, flags = await chat_completion_tools_handler( request, form_data, user, models, tools ) sources.extend(flags.get("sources", [])) except Exception as e: log.exception(e) try: form_data, flags = await chat_completion_files_handler(request, form_data, user) sources.extend(flags.get("sources", [])) except Exception as e: log.exception(e) # If context is not empty, insert it into the messages if len(sources) > 0: context_string = "" for source_idx, source in enumerate(sources): source_id = source.get("source", {}).get("name", "") if "document" in source: for doc_idx, doc_context in enumerate(source["document"]): context_string += f"{source_idx}{doc_context}\n" context_string = context_string.strip() prompt = get_last_user_message(form_data["messages"]) if prompt is None: raise Exception("No user message found") if ( request.app.state.config.RELEVANCE_THRESHOLD == 0 and context_string.strip() == "" ): log.debug( f"With a 0 relevancy threshold for RAG, the context cannot be empty" ) # Workaround for Ollama 2.0+ system prompt issue # TODO: replace with add_or_update_system_message if model.get("owned_by") == "ollama": form_data["messages"] = prepend_to_first_user_message_content( rag_template( request.app.state.config.RAG_TEMPLATE, context_string, prompt ), form_data["messages"], ) else: form_data["messages"] = add_or_update_system_message( rag_template( request.app.state.config.RAG_TEMPLATE, context_string, prompt ), form_data["messages"], ) # If there are citations, add them to the data_items sources = [source for source in sources if source.get("source", {}).get("name", "")] if len(sources) > 0: events.append({"sources": sources}) if model_knowledge: await event_emitter( { "type": "status", "data": { "action": "knowledge_search", "query": user_message, "done": True, "hidden": True, }, } ) return form_data, metadata, events async def process_chat_response( request, response, form_data, user, events, metadata, tasks ): async def background_tasks_handler(): message_map = Chats.get_messages_by_chat_id(metadata["chat_id"]) message = message_map.get(metadata["message_id"]) if message_map else None if message: messages = get_message_list(message_map, message.get("id")) if tasks and messages: if TASKS.TITLE_GENERATION in tasks: if tasks[TASKS.TITLE_GENERATION]: res = await generate_title( request, { "model": message["model"], "messages": messages, "chat_id": metadata["chat_id"], }, user, ) if res and isinstance(res, dict): if len(res.get("choices", [])) == 1: title_string = ( res.get("choices", [])[0] .get("message", {}) .get("content", message.get("content", "New Chat")) ) else: title_string = "" title_string = title_string[ title_string.find("{") : title_string.rfind("}") + 1 ] try: title = json.loads(title_string).get( "title", "New Chat" ) except Exception as e: title = "" if not title: title = messages[0].get("content", "New Chat") Chats.update_chat_title_by_id(metadata["chat_id"], title) await event_emitter( { "type": "chat:title", "data": title, } ) elif len(messages) == 2: title = messages[0].get("content", "New Chat") Chats.update_chat_title_by_id(metadata["chat_id"], title) await event_emitter( { "type": "chat:title", "data": message.get("content", "New Chat"), } ) if TASKS.TAGS_GENERATION in tasks and tasks[TASKS.TAGS_GENERATION]: res = await generate_chat_tags( request, { "model": message["model"], "messages": messages, "chat_id": metadata["chat_id"], }, user, ) if res and isinstance(res, dict): if len(res.get("choices", [])) == 1: tags_string = ( res.get("choices", [])[0] .get("message", {}) .get("content", "") ) else: tags_string = "" tags_string = tags_string[ tags_string.find("{") : tags_string.rfind("}") + 1 ] try: tags = json.loads(tags_string).get("tags", []) Chats.update_chat_tags_by_id( metadata["chat_id"], tags, user ) await event_emitter( { "type": "chat:tags", "data": tags, } ) except Exception as e: pass event_emitter = None event_caller = None if ( "session_id" in metadata and metadata["session_id"] and "chat_id" in metadata and metadata["chat_id"] and "message_id" in metadata and metadata["message_id"] ): event_emitter = get_event_emitter(metadata) event_caller = get_event_call(metadata) # Non-streaming response if not isinstance(response, StreamingResponse): if event_emitter: if "selected_model_id" in response: Chats.upsert_message_to_chat_by_id_and_message_id( metadata["chat_id"], metadata["message_id"], { "selectedModelId": response["selected_model_id"], }, ) if response.get("choices", [])[0].get("message", {}).get("content"): content = response["choices"][0]["message"]["content"] if content: await event_emitter( { "type": "chat:completion", "data": response, } ) title = Chats.get_chat_title_by_id(metadata["chat_id"]) await event_emitter( { "type": "chat:completion", "data": { "done": True, "content": content, "title": title, }, } ) # Save message in the database Chats.upsert_message_to_chat_by_id_and_message_id( metadata["chat_id"], metadata["message_id"], { "content": content, }, ) # Send a webhook notification if the user is not active if get_active_status_by_user_id(user.id) is None: webhook_url = Users.get_user_webhook_url_by_id(user.id) if webhook_url: post_webhook( request.app.state.WEBUI_NAME, webhook_url, f"{title} - {request.app.state.config.WEBUI_URL}/c/{metadata['chat_id']}\n\n{content}", { "action": "chat", "message": content, "title": title, "url": f"{request.app.state.config.WEBUI_URL}/c/{metadata['chat_id']}", }, ) await background_tasks_handler() return response else: return response # Non standard response if not any( content_type in response.headers["Content-Type"] for content_type in ["text/event-stream", "application/x-ndjson"] ): return response # Streaming response if event_emitter and event_caller: task_id = str(uuid4()) # Create a unique task ID. model_id = form_data.get("model", "") Chats.upsert_message_to_chat_by_id_and_message_id( metadata["chat_id"], metadata["message_id"], { "model": model_id, }, ) def split_content_and_whitespace(content): content_stripped = content.rstrip() original_whitespace = ( content[len(content_stripped) :] if len(content) > len(content_stripped) else "" ) return content_stripped, original_whitespace def is_opening_code_block(content): backtick_segments = content.split("```") # Even number of segments means the last backticks are opening a new block return len(backtick_segments) > 1 and len(backtick_segments) % 2 == 0 # Handle as a background task async def post_response_handler(response, events): def serialize_content_blocks(content_blocks, raw=False): content = "" for block in content_blocks: if block["type"] == "text": content = f"{content}{block['content'].strip()}\n" elif block["type"] == "tool_calls": attributes = block.get("attributes", {}) block_content = block.get("content", []) results = block.get("results", []) if results: result_display_content = "" for result in results: tool_call_id = result.get("tool_call_id", "") tool_name = "" for tool_call in block_content: if tool_call.get("id", "") == tool_call_id: tool_name = tool_call.get("function", {}).get( "name", "" ) break result_display_content = f"{result_display_content}\n> {tool_name}: {result.get('content', '')}" if not raw: content = f'{content}\n
\nTool Executed\n{result_display_content}\n
\n' else: tool_calls_display_content = "" for tool_call in block_content: tool_calls_display_content = f"{tool_calls_display_content}\n> Executing {tool_call.get('function', {}).get('name', '')}" if not raw: content = f'{content}\n
\nTool Executing...\n{tool_calls_display_content}\n
\n' elif block["type"] == "reasoning": reasoning_display_content = "\n".join( (f"> {line}" if not line.startswith(">") else line) for line in block["content"].splitlines() ) reasoning_duration = block.get("duration", None) if reasoning_duration is not None: if raw: content = f'{content}\n<{block["tag"]}>{block["content"]}\n' else: content = f'{content}\n
\nThought for {reasoning_duration} seconds\n{reasoning_display_content}\n
\n' else: if raw: content = f'{content}\n<{block["tag"]}>{block["content"]}\n' else: content = f'{content}\n
\nThinking…\n{reasoning_display_content}\n
\n' elif block["type"] == "code_interpreter": attributes = block.get("attributes", {}) output = block.get("output", None) lang = attributes.get("lang", "") content_stripped, original_whitespace = ( split_content_and_whitespace(content) ) if is_opening_code_block(content_stripped): # Remove trailing backticks that would open a new block content = ( content_stripped.rstrip("`").rstrip() + original_whitespace ) else: # Keep content as is - either closing backticks or no backticks content = content_stripped + original_whitespace if output: output = html.escape(json.dumps(output)) if raw: content = f'{content}\n\n{block["content"]}\n\n```output\n{output}\n```\n' else: content = f'{content}\n
\nAnalyzed\n```{lang}\n{block["content"]}\n```\n
\n' else: if raw: content = f'{content}\n\n{block["content"]}\n\n' else: content = f'{content}\n
\nAnalyzing...\n```{lang}\n{block["content"]}\n```\n
\n' else: block_content = str(block["content"]).strip() content = f"{content}{block['type']}: {block_content}\n" return content.strip() def convert_content_blocks_to_messages(content_blocks): messages = [] temp_blocks = [] for idx, block in enumerate(content_blocks): if block["type"] == "tool_calls": messages.append( { "role": "assistant", "content": serialize_content_blocks(temp_blocks), "tool_calls": block.get("content"), } ) results = block.get("results", []) for result in results: messages.append( { "role": "tool", "tool_call_id": result["tool_call_id"], "content": result["content"], } ) temp_blocks = [] else: temp_blocks.append(block) if temp_blocks: content = serialize_content_blocks(temp_blocks) if content: messages.append( { "role": "assistant", "content": content, } ) return messages def tag_content_handler(content_type, tags, content, content_blocks): end_flag = False def extract_attributes(tag_content): """Extract attributes from a tag if they exist.""" attributes = {} if not tag_content: # Ensure tag_content is not None return attributes # Match attributes in the format: key="value" (ignores single quotes for simplicity) matches = re.findall(r'(\w+)\s*=\s*"([^"]+)"', tag_content) for key, value in matches: attributes[key] = value return attributes if content_blocks[-1]["type"] == "text": for tag in tags: # Match start tag e.g., or start_tag_pattern = rf"<{tag}(\s.*?)?>" match = re.search(start_tag_pattern, content) if match: attr_content = ( match.group(1) if match.group(1) else "" ) # Ensure it's not None attributes = extract_attributes( attr_content ) # Extract attributes safely # Capture everything before and after the matched tag before_tag = content[ : match.start() ] # Content before opening tag after_tag = content[ match.end() : ] # Content after opening tag # Remove the start tag and after from the currently handling text block content_blocks[-1]["content"] = content_blocks[-1][ "content" ].replace(match.group(0) + after_tag, "") if before_tag: content_blocks[-1]["content"] = before_tag if not content_blocks[-1]["content"]: content_blocks.pop() # Append the new block content_blocks.append( { "type": content_type, "tag": tag, "attributes": attributes, "content": "", "started_at": time.time(), } ) if after_tag: content_blocks[-1]["content"] = after_tag break elif content_blocks[-1]["type"] == content_type: tag = content_blocks[-1]["tag"] # Match end tag e.g., end_tag_pattern = rf"" # Check if the content has the end tag if re.search(end_tag_pattern, content): end_flag = True block_content = content_blocks[-1]["content"] # Strip start and end tags from the content start_tag_pattern = rf"<{tag}(.*?)>" block_content = re.sub( start_tag_pattern, "", block_content ).strip() end_tag_regex = re.compile(end_tag_pattern, re.DOTALL) split_content = end_tag_regex.split(block_content, maxsplit=1) # Content inside the tag block_content = ( split_content[0].strip() if split_content else "" ) # Leftover content (everything after ``) leftover_content = ( split_content[1].strip() if len(split_content) > 1 else "" ) if block_content: content_blocks[-1]["content"] = block_content content_blocks[-1]["ended_at"] = time.time() content_blocks[-1]["duration"] = int( content_blocks[-1]["ended_at"] - content_blocks[-1]["started_at"] ) # Reset the content_blocks by appending a new text block if content_type != "code_interpreter": if leftover_content: content_blocks.append( { "type": "text", "content": leftover_content, } ) else: content_blocks.append( { "type": "text", "content": "", } ) else: # Remove the block if content is empty content_blocks.pop() if leftover_content: content_blocks.append( { "type": "text", "content": leftover_content, } ) else: content_blocks.append( { "type": "text", "content": "", } ) # Clean processed content content = re.sub( rf"<{tag}(.*?)>(.|\n)*?", "", content, flags=re.DOTALL, ) return content, content_blocks, end_flag message = Chats.get_message_by_id_and_message_id( metadata["chat_id"], metadata["message_id"] ) tool_calls = [] last_assistant_message = None try: if form_data["messages"][-1]["role"] == "assistant": last_assistant_message = get_last_assistant_message( form_data["messages"] ) except Exception as e: pass content = ( message.get("content", "") if message else last_assistant_message if last_assistant_message else "" ) content_blocks = [ { "type": "text", "content": content, } ] # We might want to disable this by default DETECT_REASONING = True DETECT_CODE_INTERPRETER = metadata.get("features", {}).get( "code_interpreter", False ) reasoning_tags = [ "think", "thinking", "reason", "reasoning", "thought", "Thought", ] code_interpreter_tags = ["code_interpreter"] try: for event in events: await event_emitter( { "type": "chat:completion", "data": event, } ) # Save message in the database Chats.upsert_message_to_chat_by_id_and_message_id( metadata["chat_id"], metadata["message_id"], { **event, }, ) async def stream_body_handler(response): nonlocal content nonlocal content_blocks response_tool_calls = [] async for line in response.body_iterator: line = line.decode("utf-8") if isinstance(line, bytes) else line data = line # Skip empty lines if not data.strip(): continue # "data:" is the prefix for each event if not data.startswith("data:"): continue # Remove the prefix data = data[len("data:") :].strip() try: data = json.loads(data) if "selected_model_id" in data: model_id = data["selected_model_id"] Chats.upsert_message_to_chat_by_id_and_message_id( metadata["chat_id"], metadata["message_id"], { "selectedModelId": model_id, }, ) else: choices = data.get("choices", []) if not choices: continue delta = choices[0].get("delta", {}) delta_tool_calls = delta.get("tool_calls", None) if delta_tool_calls: for delta_tool_call in delta_tool_calls: tool_call_index = delta_tool_call.get("index") if tool_call_index is not None: if ( len(response_tool_calls) <= tool_call_index ): response_tool_calls.append( delta_tool_call ) else: delta_name = delta_tool_call.get( "function", {} ).get("name") delta_arguments = delta_tool_call.get( "function", {} ).get("arguments") if delta_name: response_tool_calls[ tool_call_index ]["function"]["name"] += delta_name if delta_arguments: response_tool_calls[ tool_call_index ]["function"][ "arguments" ] += delta_arguments value = delta.get("content") if value: content = f"{content}{value}" if not content_blocks: content_blocks.append( { "type": "text", "content": "", } ) content_blocks[-1]["content"] = ( content_blocks[-1]["content"] + value ) if DETECT_REASONING: content, content_blocks, _ = ( tag_content_handler( "reasoning", reasoning_tags, content, content_blocks, ) ) if DETECT_CODE_INTERPRETER: content, content_blocks, end = ( tag_content_handler( "code_interpreter", code_interpreter_tags, content, content_blocks, ) ) if end: break if ENABLE_REALTIME_CHAT_SAVE: # Save message in the database Chats.upsert_message_to_chat_by_id_and_message_id( metadata["chat_id"], metadata["message_id"], { "content": serialize_content_blocks( content_blocks ), }, ) else: data = { "content": serialize_content_blocks( content_blocks ), } await event_emitter( { "type": "chat:completion", "data": data, } ) except Exception as e: done = "data: [DONE]" in line if done: pass else: log.debug("Error: ", e) continue if content_blocks: # Clean up the last text block if content_blocks[-1]["type"] == "text": content_blocks[-1]["content"] = content_blocks[-1][ "content" ].strip() if not content_blocks[-1]["content"]: content_blocks.pop() if not content_blocks: content_blocks.append( { "type": "text", "content": "", } ) if response_tool_calls: tool_calls.append(response_tool_calls) if response.background: await response.background() await stream_body_handler(response) MAX_TOOL_CALL_RETRIES = 5 tool_call_retries = 0 while len(tool_calls) > 0 and tool_call_retries < MAX_TOOL_CALL_RETRIES: tool_call_retries += 1 response_tool_calls = tool_calls.pop(0) content_blocks.append( { "type": "tool_calls", "content": response_tool_calls, } ) await event_emitter( { "type": "chat:completion", "data": { "content": serialize_content_blocks(content_blocks), }, } ) tools = metadata.get("tools", {}) results = [] for tool_call in response_tool_calls: tool_call_id = tool_call.get("id", "") tool_name = tool_call.get("function", {}).get("name", "") tool_function_params = {} try: # json.loads cannot be used because some models do not produce valid JSON tool_function_params = ast.literal_eval( tool_call.get("function", {}).get("arguments", "{}") ) except Exception as e: log.debug(e) tool_result = None if tool_name in tools: tool = tools[tool_name] spec = tool.get("spec", {}) try: required_params = spec.get("parameters", {}).get( "required", [] ) tool_function = tool["callable"] tool_function_params = { k: v for k, v in tool_function_params.items() if k in required_params } tool_result = await tool_function( **tool_function_params ) except Exception as e: tool_result = str(e) results.append( { "tool_call_id": tool_call_id, "content": tool_result, } ) content_blocks[-1]["results"] = results content_blocks.append( { "type": "text", "content": "", } ) await event_emitter( { "type": "chat:completion", "data": { "content": serialize_content_blocks(content_blocks), }, } ) try: res = await generate_chat_completion( request, { "model": model_id, "stream": True, "tools": form_data["tools"], "messages": [ *form_data["messages"], *convert_content_blocks_to_messages(content_blocks), ], }, user, ) if isinstance(res, StreamingResponse): await stream_body_handler(res) else: break except Exception as e: log.debug(e) break if DETECT_CODE_INTERPRETER: MAX_RETRIES = 5 retries = 0 while ( content_blocks[-1]["type"] == "code_interpreter" and retries < MAX_RETRIES ): await event_emitter( { "type": "chat:completion", "data": { "content": serialize_content_blocks(content_blocks), }, } ) retries += 1 log.debug(f"Attempt count: {retries}") output = "" try: if content_blocks[-1]["attributes"].get("type") == "code": code = content_blocks[-1]["content"] if ( request.app.state.config.CODE_INTERPRETER_ENGINE == "pyodide" ): output = await event_caller( { "type": "execute:python", "data": { "id": str(uuid4()), "code": code, "session_id": metadata.get( "session_id", None ), }, } ) elif ( request.app.state.config.CODE_INTERPRETER_ENGINE == "jupyter" ): output = await execute_code_jupyter( request.app.state.config.CODE_INTERPRETER_JUPYTER_URL, code, ( request.app.state.config.CODE_INTERPRETER_JUPYTER_AUTH_TOKEN if request.app.state.config.CODE_INTERPRETER_JUPYTER_AUTH == "token" else None ), ( request.app.state.config.CODE_INTERPRETER_JUPYTER_AUTH_PASSWORD if request.app.state.config.CODE_INTERPRETER_JUPYTER_AUTH == "password" else None ), request.app.state.config.CODE_INTERPRETER_JUPYTER_TIMEOUT, ) else: output = { "stdout": "Code interpreter engine not configured." } log.debug(f"Code interpreter output: {output}") if isinstance(output, dict): stdout = output.get("stdout", "") if isinstance(stdout, str): stdoutLines = stdout.split("\n") for idx, line in enumerate(stdoutLines): if "data:image/png;base64" in line: id = str(uuid4()) # ensure the path exists os.makedirs( os.path.join(CACHE_DIR, "images"), exist_ok=True, ) image_path = os.path.join( CACHE_DIR, f"images/{id}.png", ) with open(image_path, "wb") as f: f.write( base64.b64decode( line.split(",")[1] ) ) stdoutLines[idx] = ( f"![Output Image {idx}](/cache/images/{id}.png)" ) output["stdout"] = "\n".join(stdoutLines) result = output.get("result", "") if isinstance(result, str): resultLines = result.split("\n") for idx, line in enumerate(resultLines): if "data:image/png;base64" in line: id = str(uuid4()) # ensure the path exists os.makedirs( os.path.join(CACHE_DIR, "images"), exist_ok=True, ) image_path = os.path.join( CACHE_DIR, f"images/{id}.png", ) with open(image_path, "wb") as f: f.write( base64.b64decode( line.split(",")[1] ) ) resultLines[idx] = ( f"![Output Image {idx}](/cache/images/{id}.png)" ) output["result"] = "\n".join(resultLines) except Exception as e: output = str(e) content_blocks[-1]["output"] = output content_blocks.append( { "type": "text", "content": "", } ) await event_emitter( { "type": "chat:completion", "data": { "content": serialize_content_blocks(content_blocks), }, } ) print(content_blocks, serialize_content_blocks(content_blocks)) try: res = await generate_chat_completion( request, { "model": model_id, "stream": True, "messages": [ *form_data["messages"], { "role": "assistant", "content": serialize_content_blocks( content_blocks, raw=True ), }, ], }, user, ) if isinstance(res, StreamingResponse): await stream_body_handler(res) else: break except Exception as e: log.debug(e) break title = Chats.get_chat_title_by_id(metadata["chat_id"]) data = { "done": True, "content": serialize_content_blocks(content_blocks), "title": title, } if not ENABLE_REALTIME_CHAT_SAVE: # Save message in the database Chats.upsert_message_to_chat_by_id_and_message_id( metadata["chat_id"], metadata["message_id"], { "content": serialize_content_blocks(content_blocks), }, ) # Send a webhook notification if the user is not active if get_active_status_by_user_id(user.id) is None: webhook_url = Users.get_user_webhook_url_by_id(user.id) if webhook_url: post_webhook( request.app.state.WEBUI_NAME, webhook_url, f"{title} - {request.app.state.config.WEBUI_URL}/c/{metadata['chat_id']}\n\n{content}", { "action": "chat", "message": content, "title": title, "url": f"{request.app.state.config.WEBUI_URL}/c/{metadata['chat_id']}", }, ) await event_emitter( { "type": "chat:completion", "data": data, } ) await background_tasks_handler() except asyncio.CancelledError: print("Task was cancelled!") await event_emitter({"type": "task-cancelled"}) if not ENABLE_REALTIME_CHAT_SAVE: # Save message in the database Chats.upsert_message_to_chat_by_id_and_message_id( metadata["chat_id"], metadata["message_id"], { "content": serialize_content_blocks(content_blocks), }, ) if response.background is not None: await response.background() # background_tasks.add_task(post_response_handler, response, events) task_id, _ = create_task(post_response_handler(response, events)) return {"status": True, "task_id": task_id} else: # Fallback to the original response async def stream_wrapper(original_generator, events): def wrap_item(item): return f"data: {item}\n\n" for event in events: yield wrap_item(json.dumps(event)) async for data in original_generator: yield data return StreamingResponse( stream_wrapper(response.body_iterator, events), headers=dict(response.headers), background=response.background, )