from typing import Optional, List, Dict, Any from sqlalchemy import ( cast, column, create_engine, Column, Integer, MetaData, select, text, Text, Table, values, ) from sqlalchemy.sql import true from sqlalchemy.pool import NullPool from sqlalchemy.orm import declarative_base, scoped_session, sessionmaker from sqlalchemy.dialects.postgresql import JSONB, array from pgvector.sqlalchemy import Vector from sqlalchemy.ext.mutable import MutableDict from sqlalchemy.exc import NoSuchTableError from open_webui.retrieval.vector.main import VectorItem, SearchResult, GetResult from open_webui.config import PGVECTOR_DB_URL, PGVECTOR_INITIALIZE_MAX_VECTOR_LENGTH VECTOR_LENGTH = PGVECTOR_INITIALIZE_MAX_VECTOR_LENGTH Base = declarative_base() class DocumentChunk(Base): __tablename__ = "document_chunk" id = Column(Text, primary_key=True) vector = Column(Vector(dim=VECTOR_LENGTH), nullable=True) collection_name = Column(Text, nullable=False) text = Column(Text, nullable=True) vmetadata = Column(MutableDict.as_mutable(JSONB), nullable=True) class PgvectorClient: def __init__(self) -> None: # if no pgvector uri, use the existing database connection if not PGVECTOR_DB_URL: from open_webui.internal.db import Session self.session = Session else: engine = create_engine( PGVECTOR_DB_URL, pool_pre_ping=True, poolclass=NullPool ) SessionLocal = sessionmaker( autocommit=False, autoflush=False, bind=engine, expire_on_commit=False ) self.session = scoped_session(SessionLocal) try: # Ensure the pgvector extension is available self.session.execute(text("CREATE EXTENSION IF NOT EXISTS vector;")) # Check vector length consistency self.check_vector_length() # Create the tables if they do not exist # Base.metadata.create_all requires a bind (engine or connection) # Get the connection from the session connection = self.session.connection() Base.metadata.create_all(bind=connection) # Create an index on the vector column if it doesn't exist self.session.execute( text( "CREATE INDEX IF NOT EXISTS idx_document_chunk_vector " "ON document_chunk USING ivfflat (vector vector_cosine_ops) WITH (lists = 100);" ) ) self.session.execute( text( "CREATE INDEX IF NOT EXISTS idx_document_chunk_collection_name " "ON document_chunk (collection_name);" ) ) self.session.commit() print("Initialization complete.") except Exception as e: self.session.rollback() print(f"Error during initialization: {e}") raise def check_vector_length(self) -> None: """ Check if the VECTOR_LENGTH matches the existing vector column dimension in the database. Raises an exception if there is a mismatch. """ metadata = MetaData() try: # Attempt to reflect the 'document_chunk' table document_chunk_table = Table( "document_chunk", metadata, autoload_with=self.session.bind ) except NoSuchTableError: # Table does not exist; no action needed return # Proceed to check the vector column if "vector" in document_chunk_table.columns: vector_column = document_chunk_table.columns["vector"] vector_type = vector_column.type if isinstance(vector_type, Vector): db_vector_length = vector_type.dim if db_vector_length != VECTOR_LENGTH: raise Exception( f"VECTOR_LENGTH {VECTOR_LENGTH} does not match existing vector column dimension {db_vector_length}. " "Cannot change vector size after initialization without migrating the data." ) else: raise Exception( "The 'vector' column exists but is not of type 'Vector'." ) else: raise Exception( "The 'vector' column does not exist in the 'document_chunk' table." ) def adjust_vector_length(self, vector: List[float]) -> List[float]: # Adjust vector to have length VECTOR_LENGTH current_length = len(vector) if current_length < VECTOR_LENGTH: # Pad the vector with zeros vector += [0.0] * (VECTOR_LENGTH - current_length) elif current_length > VECTOR_LENGTH: raise Exception( f"Vector length {current_length} not supported. Max length must be <= {VECTOR_LENGTH}" ) return vector def insert(self, collection_name: str, items: List[VectorItem]) -> None: try: new_items = [] for item in items: vector = self.adjust_vector_length(item["vector"]) new_chunk = DocumentChunk( id=item["id"], vector=vector, collection_name=collection_name, text=item["text"], vmetadata=item["metadata"], ) new_items.append(new_chunk) self.session.bulk_save_objects(new_items) self.session.commit() print( f"Inserted {len(new_items)} items into collection '{collection_name}'." ) except Exception as e: self.session.rollback() print(f"Error during insert: {e}") raise def upsert(self, collection_name: str, items: List[VectorItem]) -> None: try: for item in items: vector = self.adjust_vector_length(item["vector"]) existing = ( self.session.query(DocumentChunk) .filter(DocumentChunk.id == item["id"]) .first() ) if existing: existing.vector = vector existing.text = item["text"] existing.vmetadata = item["metadata"] existing.collection_name = ( collection_name # Update collection_name if necessary ) else: new_chunk = DocumentChunk( id=item["id"], vector=vector, collection_name=collection_name, text=item["text"], vmetadata=item["metadata"], ) self.session.add(new_chunk) self.session.commit() print(f"Upserted {len(items)} items into collection '{collection_name}'.") except Exception as e: self.session.rollback() print(f"Error during upsert: {e}") raise def search( self, collection_name: str, vectors: List[List[float]], limit: Optional[int] = None, ) -> Optional[SearchResult]: try: if not vectors: return None # Adjust query vectors to VECTOR_LENGTH vectors = [self.adjust_vector_length(vector) for vector in vectors] num_queries = len(vectors) def vector_expr(vector): return cast(array(vector), Vector(VECTOR_LENGTH)) # Create the values for query vectors qid_col = column("qid", Integer) q_vector_col = column("q_vector", Vector(VECTOR_LENGTH)) query_vectors = ( values(qid_col, q_vector_col) .data( [(idx, vector_expr(vector)) for idx, vector in enumerate(vectors)] ) .alias("query_vectors") ) # Build the lateral subquery for each query vector subq = ( select( DocumentChunk.id, DocumentChunk.text, DocumentChunk.vmetadata, ( DocumentChunk.vector.cosine_distance(query_vectors.c.q_vector) ).label("distance"), ) .where(DocumentChunk.collection_name == collection_name) .order_by( (DocumentChunk.vector.cosine_distance(query_vectors.c.q_vector)) ) ) if limit is not None: subq = subq.limit(limit) subq = subq.lateral("result") # Build the main query by joining query_vectors and the lateral subquery stmt = ( select( query_vectors.c.qid, subq.c.id, subq.c.text, subq.c.vmetadata, subq.c.distance, ) .select_from(query_vectors) .join(subq, true()) .order_by(query_vectors.c.qid, subq.c.distance) ) result_proxy = self.session.execute(stmt) results = result_proxy.all() ids = [[] for _ in range(num_queries)] distances = [[] for _ in range(num_queries)] documents = [[] for _ in range(num_queries)] metadatas = [[] for _ in range(num_queries)] if not results: return SearchResult( ids=ids, distances=distances, documents=documents, metadatas=metadatas, ) for row in results: qid = int(row.qid) ids[qid].append(row.id) distances[qid].append(row.distance) documents[qid].append(row.text) metadatas[qid].append(row.vmetadata) return SearchResult( ids=ids, distances=distances, documents=documents, metadatas=metadatas ) except Exception as e: print(f"Error during search: {e}") return None def query( self, collection_name: str, filter: Dict[str, Any], limit: Optional[int] = None ) -> Optional[GetResult]: try: query = self.session.query(DocumentChunk).filter( DocumentChunk.collection_name == collection_name ) for key, value in filter.items(): query = query.filter(DocumentChunk.vmetadata[key].astext == str(value)) if limit is not None: query = query.limit(limit) results = query.all() if not results: return None ids = [[result.id for result in results]] documents = [[result.text for result in results]] metadatas = [[result.vmetadata for result in results]] return GetResult( ids=ids, documents=documents, metadatas=metadatas, ) except Exception as e: print(f"Error during query: {e}") return None def get( self, collection_name: str, limit: Optional[int] = None ) -> Optional[GetResult]: try: query = self.session.query(DocumentChunk).filter( DocumentChunk.collection_name == collection_name ) if limit is not None: query = query.limit(limit) results = query.all() if not results: return None ids = [[result.id for result in results]] documents = [[result.text for result in results]] metadatas = [[result.vmetadata for result in results]] return GetResult(ids=ids, documents=documents, metadatas=metadatas) except Exception as e: print(f"Error during get: {e}") return None def delete( self, collection_name: str, ids: Optional[List[str]] = None, filter: Optional[Dict[str, Any]] = None, ) -> None: try: query = self.session.query(DocumentChunk).filter( DocumentChunk.collection_name == collection_name ) if ids: query = query.filter(DocumentChunk.id.in_(ids)) if filter: for key, value in filter.items(): query = query.filter( DocumentChunk.vmetadata[key].astext == str(value) ) deleted = query.delete(synchronize_session=False) self.session.commit() print(f"Deleted {deleted} items from collection '{collection_name}'.") except Exception as e: self.session.rollback() print(f"Error during delete: {e}") raise def reset(self) -> None: try: deleted = self.session.query(DocumentChunk).delete() self.session.commit() print( f"Reset complete. Deleted {deleted} items from 'document_chunk' table." ) except Exception as e: self.session.rollback() print(f"Error during reset: {e}") raise def close(self) -> None: pass def has_collection(self, collection_name: str) -> bool: try: exists = ( self.session.query(DocumentChunk) .filter(DocumentChunk.collection_name == collection_name) .first() is not None ) return exists except Exception as e: print(f"Error checking collection existence: {e}") return False def delete_collection(self, collection_name: str) -> None: self.delete(collection_name) print(f"Collection '{collection_name}' deleted.")