from fastapi import (
    FastAPI,
    Request,
    Depends,
    HTTPException,
    status,
    UploadFile,
    File,
    Form,
)
from fastapi.middleware.cors import CORSMiddleware
import os, shutil
from typing import List

# from chromadb.utils import embedding_functions

from langchain_community.document_loaders import (
    WebBaseLoader,
    TextLoader,
    PyPDFLoader,
    CSVLoader,
    Docx2txtLoader,
    UnstructuredEPubLoader,
    UnstructuredWordDocumentLoader,
    UnstructuredMarkdownLoader,
    UnstructuredXMLLoader,
    UnstructuredRSTLoader,
    UnstructuredExcelLoader,
)
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import RetrievalQA


from pydantic import BaseModel
from typing import Optional

import uuid
import time

from utils.misc import calculate_sha256, calculate_sha256_string
from utils.utils import get_current_user, get_admin_user
from config import UPLOAD_DIR, EMBED_MODEL, CHROMA_CLIENT, CHUNK_SIZE, CHUNK_OVERLAP
from constants import ERROR_MESSAGES

# EMBEDDING_FUNC = embedding_functions.SentenceTransformerEmbeddingFunction(
#     model_name=EMBED_MODEL
# )

app = FastAPI()

origins = ["*"]

app.add_middleware(
    CORSMiddleware,
    allow_origins=origins,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


class CollectionNameForm(BaseModel):
    collection_name: Optional[str] = "test"


class StoreWebForm(CollectionNameForm):
    url: str


def store_data_in_vector_db(data, collection_name) -> bool:
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP
    )
    docs = text_splitter.split_documents(data)

    texts = [doc.page_content for doc in docs]
    metadatas = [doc.metadata for doc in docs]

    try:
        collection = CHROMA_CLIENT.create_collection(name=collection_name)

        collection.add(
            documents=texts, metadatas=metadatas, ids=[str(uuid.uuid1()) for _ in texts]
        )
        return True
    except Exception as e:
        print(e)
        if e.__class__.__name__ == "UniqueConstraintError":
            return True

        return False


@app.get("/")
async def get_status():
    return {"status": True}


class QueryDocForm(BaseModel):
    collection_name: str
    query: str
    k: Optional[int] = 4


@app.post("/query/doc")
def query_doc(
    form_data: QueryDocForm,
    user=Depends(get_current_user),
):
    try:
        collection = CHROMA_CLIENT.get_collection(
            name=form_data.collection_name,
        )
        result = collection.query(query_texts=[form_data.query], n_results=form_data.k)
        return result
    except Exception as e:
        print(e)
        raise HTTPException(
            status_code=status.HTTP_400_BAD_REQUEST,
            detail=ERROR_MESSAGES.DEFAULT(e),
        )


class QueryCollectionsForm(BaseModel):
    collection_names: List[str]
    query: str
    k: Optional[int] = 4


def merge_and_sort_query_results(query_results, k):
    # Initialize lists to store combined data
    combined_ids = []
    combined_distances = []
    combined_metadatas = []
    combined_documents = []

    # Combine data from each dictionary
    for data in query_results:
        combined_ids.extend(data["ids"][0])
        combined_distances.extend(data["distances"][0])
        combined_metadatas.extend(data["metadatas"][0])
        combined_documents.extend(data["documents"][0])

    # Create a list of tuples (distance, id, metadata, document)
    combined = list(
        zip(combined_distances, combined_ids, combined_metadatas, combined_documents)
    )

    # Sort the list based on distances
    combined.sort(key=lambda x: x[0])

    # Unzip the sorted list
    sorted_distances, sorted_ids, sorted_metadatas, sorted_documents = zip(*combined)

    # Slicing the lists to include only k elements
    sorted_distances = list(sorted_distances)[:k]
    sorted_ids = list(sorted_ids)[:k]
    sorted_metadatas = list(sorted_metadatas)[:k]
    sorted_documents = list(sorted_documents)[:k]

    # Create the output dictionary
    merged_query_results = {
        "ids": [sorted_ids],
        "distances": [sorted_distances],
        "metadatas": [sorted_metadatas],
        "documents": [sorted_documents],
        "embeddings": None,
        "uris": None,
        "data": None,
    }

    return merged_query_results


@app.post("/query/collection")
def query_collection(
    form_data: QueryCollectionsForm,
    user=Depends(get_current_user),
):
    results = []

    for collection_name in form_data.collection_names:
        try:
            collection = CHROMA_CLIENT.get_collection(
                name=collection_name,
            )
            result = collection.query(
                query_texts=[form_data.query], n_results=form_data.k
            )
            results.append(result)
        except:
            pass

    return merge_and_sort_query_results(results, form_data.k)


@app.post("/web")
def store_web(form_data: StoreWebForm, user=Depends(get_current_user)):
    # "https://www.gutenberg.org/files/1727/1727-h/1727-h.htm"
    try:
        loader = WebBaseLoader(form_data.url)
        data = loader.load()

        collection_name = form_data.collection_name
        if collection_name == "":
            collection_name = calculate_sha256_string(form_data.url)[:63]

        store_data_in_vector_db(data, collection_name)
        return {
            "status": True,
            "collection_name": collection_name,
            "filename": form_data.url,
        }
    except Exception as e:
        print(e)
        raise HTTPException(
            status_code=status.HTTP_400_BAD_REQUEST,
            detail=ERROR_MESSAGES.DEFAULT(e),
        )


def get_loader(file, file_path):
    file_ext = file.filename.split(".")[-1].lower()
    known_type = True

    known_source_ext = [
        "go",
        "py",
        "java",
        "sh",
        "bat",
        "ps1",
        "cmd",
        "js",
        "ts",
        "css",
        "cpp",
        "hpp",
        "h",
        "c",
        "cs",
        "sql",
        "log",
        "ini",
        "pl",
        "pm",
        "r",
        "dart",
        "dockerfile",
        "env",
        "php",
        "hs",
        "hsc",
        "lua",
        "nginxconf",
        "conf",
        "m",
        "mm",
        "plsql",
        "perl",
        "rb",
        "rs",
        "db2",
        "scala",
        "bash",
        "swift",
        "vue",
        "svelte",
    ]

    if file_ext == "pdf":
        loader = PyPDFLoader(file_path)
    elif file_ext == "csv":
        loader = CSVLoader(file_path)
    elif file_ext == "rst":
        loader = UnstructuredRSTLoader(file_path, mode="elements")
    elif file_ext == "xml":
        loader = UnstructuredXMLLoader(file_path)
    elif file_ext == "md":
        loader = UnstructuredMarkdownLoader(file_path)
    elif file.content_type == "application/epub+zip":
        loader = UnstructuredEPubLoader(file_path)
    elif (
        file.content_type
        == "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
        or file_ext in ["doc", "docx"]
    ):
        loader = Docx2txtLoader(file_path)
    elif file.content_type in [
        "application/vnd.ms-excel",
        "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
    ] or file_ext in ["xls", "xlsx"]:
        loader = UnstructuredExcelLoader(file_path)
    elif file_ext in known_source_ext or file.content_type.find("text/") >= 0:
        loader = TextLoader(file_path)
    else:
        loader = TextLoader(file_path)
        known_type = False

    return loader, known_type


@app.post("/doc")
def store_doc(
    collection_name: Optional[str] = Form(None),
    file: UploadFile = File(...),
    user=Depends(get_current_user),
):
    # "https://www.gutenberg.org/files/1727/1727-h/1727-h.htm"

    print(file.content_type)
    try:
        filename = file.filename
        file_path = f"{UPLOAD_DIR}/{filename}"
        contents = file.file.read()
        with open(file_path, "wb") as f:
            f.write(contents)
            f.close()

        f = open(file_path, "rb")
        if collection_name == None:
            collection_name = calculate_sha256(f)[:63]
        f.close()

        loader, known_type = get_loader(file, file_path)
        data = loader.load()
        result = store_data_in_vector_db(data, collection_name)

        if result:
            return {
                "status": True,
                "collection_name": collection_name,
                "filename": filename,
                "known_type": known_type,
            }
        else:
            raise HTTPException(
                status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
                detail=ERROR_MESSAGES.DEFAULT(),
            )
    except Exception as e:
        print(e)
        if "No pandoc was found" in str(e):
            raise HTTPException(
                status_code=status.HTTP_400_BAD_REQUEST,
                detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED,
            )
        else:
            raise HTTPException(
                status_code=status.HTTP_400_BAD_REQUEST,
                detail=ERROR_MESSAGES.DEFAULT(e),
            )


@app.get("/reset/db")
def reset_vector_db(user=Depends(get_admin_user)):
    CHROMA_CLIENT.reset()


@app.get("/reset")
def reset(user=Depends(get_admin_user)) -> bool:
    folder = f"{UPLOAD_DIR}"
    for filename in os.listdir(folder):
        file_path = os.path.join(folder, filename)
        try:
            if os.path.isfile(file_path) or os.path.islink(file_path):
                os.unlink(file_path)
            elif os.path.isdir(file_path):
                shutil.rmtree(file_path)
        except Exception as e:
            print("Failed to delete %s. Reason: %s" % (file_path, e))

    try:
        CHROMA_CLIENT.reset()
    except Exception as e:
        print(e)

    return True