import hashlib import re import time import uuid from datetime import timedelta from pathlib import Path from typing import Callable, Optional def get_message_list(messages, message_id): """ Reconstructs a list of messages in order up to the specified message_id. :param message_id: ID of the message to reconstruct the chain :param messages: Message history dict containing all messages :return: List of ordered messages starting from the root to the given message """ # Find the message by its id current_message = messages.get(message_id) if not current_message: return f"Message ID {message_id} not found in the history." # Reconstruct the chain by following the parentId links message_list = [] while current_message: message_list.insert( 0, current_message ) # Insert the message at the beginning of the list parent_id = current_message["parentId"] current_message = messages.get(parent_id) if parent_id else None return message_list def get_messages_content(messages: list[dict]) -> str: return "\n".join( [ f"{message['role'].upper()}: {get_content_from_message(message)}" for message in messages ] ) def get_last_user_message_item(messages: list[dict]) -> Optional[dict]: for message in reversed(messages): if message["role"] == "user": return message return None def get_content_from_message(message: dict) -> Optional[str]: if isinstance(message["content"], list): for item in message["content"]: if item["type"] == "text": return item["text"] else: return message["content"] return None def get_last_user_message(messages: list[dict]) -> Optional[str]: message = get_last_user_message_item(messages) if message is None: return None return get_content_from_message(message) def get_last_assistant_message_item(messages: list[dict]) -> Optional[dict]: for message in reversed(messages): if message["role"] == "assistant": return message return None def get_last_assistant_message(messages: list[dict]) -> Optional[str]: for message in reversed(messages): if message["role"] == "assistant": return get_content_from_message(message) return None def get_system_message(messages: list[dict]) -> Optional[dict]: for message in messages: if message["role"] == "system": return message return None def remove_system_message(messages: list[dict]) -> list[dict]: return [message for message in messages if message["role"] != "system"] def pop_system_message(messages: list[dict]) -> tuple[Optional[dict], list[dict]]: return get_system_message(messages), remove_system_message(messages) def prepend_to_first_user_message_content( content: str, messages: list[dict] ) -> list[dict]: for message in messages: if message["role"] == "user": if isinstance(message["content"], list): for item in message["content"]: if item["type"] == "text": item["text"] = f"{content}\n{item['text']}" else: message["content"] = f"{content}\n{message['content']}" break return messages def add_or_update_system_message(content: str, messages: list[dict]): """ Adds a new system message at the beginning of the messages list or updates the existing system message at the beginning. :param msg: The message to be added or appended. :param messages: The list of message dictionaries. :return: The updated list of message dictionaries. """ if messages and messages[0].get("role") == "system": messages[0]["content"] = f"{content}\n{messages[0]['content']}" else: # Insert at the beginning messages.insert(0, {"role": "system", "content": content}) return messages def openai_chat_message_template(model: str): return { "id": f"{model}-{str(uuid.uuid4())}", "created": int(time.time()), "model": model, "choices": [{"index": 0, "logprobs": None, "finish_reason": None}], } def openai_chat_chunk_message_template( model: str, message: Optional[str] = None, usage: Optional[dict] = None ) -> dict: template = openai_chat_message_template(model) template["object"] = "chat.completion.chunk" if message: template["choices"][0]["delta"] = {"content": message} else: template["choices"][0]["finish_reason"] = "stop" if usage: template["usage"] = usage return template def openai_chat_completion_message_template( model: str, message: Optional[str] = None, usage: Optional[dict] = None ) -> dict: template = openai_chat_message_template(model) template["object"] = "chat.completion" if message is not None: template["choices"][0]["message"] = {"content": message, "role": "assistant"} template["choices"][0]["finish_reason"] = "stop" if usage: template["usage"] = usage return template def get_gravatar_url(email): # Trim leading and trailing whitespace from # an email address and force all characters # to lower case address = str(email).strip().lower() # Create a SHA256 hash of the final string hash_object = hashlib.sha256(address.encode()) hash_hex = hash_object.hexdigest() # Grab the actual image URL return f"https://www.gravatar.com/avatar/{hash_hex}?d=mp" def calculate_sha256(file): sha256 = hashlib.sha256() # Read the file in chunks to efficiently handle large files for chunk in iter(lambda: file.read(8192), b""): sha256.update(chunk) return sha256.hexdigest() def calculate_sha256_string(string): # Create a new SHA-256 hash object sha256_hash = hashlib.sha256() # Update the hash object with the bytes of the input string sha256_hash.update(string.encode("utf-8")) # Get the hexadecimal representation of the hash hashed_string = sha256_hash.hexdigest() return hashed_string def validate_email_format(email: str) -> bool: if email.endswith("@localhost"): return True return bool(re.match(r"[^@]+@[^@]+\.[^@]+", email)) def sanitize_filename(file_name): # Convert to lowercase lower_case_file_name = file_name.lower() # Remove special characters using regular expression sanitized_file_name = re.sub(r"[^\w\s]", "", lower_case_file_name) # Replace spaces with dashes final_file_name = re.sub(r"\s+", "-", sanitized_file_name) return final_file_name def extract_folders_after_data_docs(path): # Convert the path to a Path object if it's not already path = Path(path) # Extract parts of the path parts = path.parts # Find the index of '/data/docs' in the path try: index_data_docs = parts.index("data") + 1 index_docs = parts.index("docs", index_data_docs) + 1 except ValueError: return [] # Exclude the filename and accumulate folder names tags = [] folders = parts[index_docs:-1] for idx, _ in enumerate(folders): tags.append("/".join(folders[: idx + 1])) return tags def parse_duration(duration: str) -> Optional[timedelta]: if duration == "-1" or duration == "0": return None # Regular expression to find number and unit pairs pattern = r"(-?\d+(\.\d+)?)(ms|s|m|h|d|w)" matches = re.findall(pattern, duration) if not matches: raise ValueError("Invalid duration string") total_duration = timedelta() for number, _, unit in matches: number = float(number) if unit == "ms": total_duration += timedelta(milliseconds=number) elif unit == "s": total_duration += timedelta(seconds=number) elif unit == "m": total_duration += timedelta(minutes=number) elif unit == "h": total_duration += timedelta(hours=number) elif unit == "d": total_duration += timedelta(days=number) elif unit == "w": total_duration += timedelta(weeks=number) return total_duration def parse_ollama_modelfile(model_text): parameters_meta = { "mirostat": int, "mirostat_eta": float, "mirostat_tau": float, "num_ctx": int, "repeat_last_n": int, "repeat_penalty": float, "temperature": float, "seed": int, "tfs_z": float, "num_predict": int, "top_k": int, "top_p": float, "num_keep": int, "typical_p": float, "presence_penalty": float, "frequency_penalty": float, "penalize_newline": bool, "numa": bool, "num_batch": int, "num_gpu": int, "main_gpu": int, "low_vram": bool, "f16_kv": bool, "vocab_only": bool, "use_mmap": bool, "use_mlock": bool, "num_thread": int, } data = {"base_model_id": None, "params": {}} # Parse base model base_model_match = re.search( r"^FROM\s+(\w+)", model_text, re.MULTILINE | re.IGNORECASE ) if base_model_match: data["base_model_id"] = base_model_match.group(1) # Parse template template_match = re.search( r'TEMPLATE\s+"""(.+?)"""', model_text, re.DOTALL | re.IGNORECASE ) if template_match: data["params"] = {"template": template_match.group(1).strip()} # Parse stops stops = re.findall(r'PARAMETER stop "(.*?)"', model_text, re.IGNORECASE) if stops: data["params"]["stop"] = stops # Parse other parameters from the provided list for param, param_type in parameters_meta.items(): param_match = re.search(rf"PARAMETER {param} (.+)", model_text, re.IGNORECASE) if param_match: value = param_match.group(1) try: if param_type is int: value = int(value) elif param_type is float: value = float(value) elif param_type is bool: value = value.lower() == "true" except Exception as e: print(e) continue data["params"][param] = value # Parse adapter adapter_match = re.search(r"ADAPTER (.+)", model_text, re.IGNORECASE) if adapter_match: data["params"]["adapter"] = adapter_match.group(1) # Parse system description system_desc_match = re.search( r'SYSTEM\s+"""(.+?)"""', model_text, re.DOTALL | re.IGNORECASE ) system_desc_match_single = re.search( r"SYSTEM\s+([^\n]+)", model_text, re.IGNORECASE ) if system_desc_match: data["params"]["system"] = system_desc_match.group(1).strip() elif system_desc_match_single: data["params"]["system"] = system_desc_match_single.group(1).strip() # Parse messages messages = [] message_matches = re.findall(r"MESSAGE (\w+) (.+)", model_text, re.IGNORECASE) for role, content in message_matches: messages.append({"role": role, "content": content}) if messages: data["params"]["messages"] = messages return data