import chromadb from chromadb import Settings from chromadb.utils.batch_utils import create_batches from typing import Optional from open_webui.retrieval.vector.main import VectorItem, SearchResult, GetResult from open_webui.config import ( CHROMA_DATA_PATH, CHROMA_HTTP_HOST, CHROMA_HTTP_PORT, CHROMA_HTTP_HEADERS, CHROMA_HTTP_SSL, CHROMA_TENANT, CHROMA_DATABASE, CHROMA_CLIENT_AUTH_PROVIDER, CHROMA_CLIENT_AUTH_CREDENTIALS, ) class ChromaClient: def __init__(self): settings_dict = { "allow_reset": True, "anonymized_telemetry": False, } if CHROMA_CLIENT_AUTH_PROVIDER is not None: settings_dict["chroma_client_auth_provider"] = CHROMA_CLIENT_AUTH_PROVIDER if CHROMA_CLIENT_AUTH_CREDENTIALS is not None: settings_dict["chroma_client_auth_credentials"] = ( CHROMA_CLIENT_AUTH_CREDENTIALS ) if CHROMA_HTTP_HOST != "": self.client = chromadb.HttpClient( host=CHROMA_HTTP_HOST, port=CHROMA_HTTP_PORT, headers=CHROMA_HTTP_HEADERS, ssl=CHROMA_HTTP_SSL, tenant=CHROMA_TENANT, database=CHROMA_DATABASE, settings=Settings(**settings_dict), ) else: self.client = chromadb.PersistentClient( path=CHROMA_DATA_PATH, settings=Settings(**settings_dict), tenant=CHROMA_TENANT, database=CHROMA_DATABASE, ) def has_collection(self, collection_name: str) -> bool: # Check if the collection exists based on the collection name. collections = self.client.list_collections() return collection_name in [collection.name for collection in collections] def delete_collection(self, collection_name: str): # Delete the collection based on the collection name. return self.client.delete_collection(name=collection_name) def search( self, collection_name: str, vectors: list[list[float | int]], limit: int ) -> Optional[SearchResult]: # Search for the nearest neighbor items based on the vectors and return 'limit' number of results. try: collection = self.client.get_collection(name=collection_name) if collection: result = collection.query( query_embeddings=vectors, n_results=limit, ) return SearchResult( **{ "ids": result["ids"], "distances": result["distances"], "documents": result["documents"], "metadatas": result["metadatas"], } ) return None except Exception as e: return None def query( self, collection_name: str, filter: dict, limit: Optional[int] = None ) -> Optional[GetResult]: # Query the items from the collection based on the filter. try: collection = self.client.get_collection(name=collection_name) if collection: result = collection.get( where=filter, limit=limit, ) return GetResult( **{ "ids": [result["ids"]], "documents": [result["documents"]], "metadatas": [result["metadatas"]], } ) return None except Exception as e: print(e) return None def get(self, collection_name: str) -> Optional[GetResult]: # Get all the items in the collection. collection = self.client.get_collection(name=collection_name) if collection: result = collection.get() return GetResult( **{ "ids": [result["ids"]], "documents": [result["documents"]], "metadatas": [result["metadatas"]], } ) return None def insert(self, collection_name: str, items: list[VectorItem]): # Insert the items into the collection, if the collection does not exist, it will be created. collection = self.client.get_or_create_collection( name=collection_name, metadata={"hnsw:space": "cosine"} ) ids = [item["id"] for item in items] documents = [item["text"] for item in items] embeddings = [item["vector"] for item in items] metadatas = [item["metadata"] for item in items] for batch in create_batches( api=self.client, documents=documents, embeddings=embeddings, ids=ids, metadatas=metadatas, ): collection.add(*batch) def upsert(self, collection_name: str, items: list[VectorItem]): # Update the items in the collection, if the items are not present, insert them. If the collection does not exist, it will be created. collection = self.client.get_or_create_collection( name=collection_name, metadata={"hnsw:space": "cosine"} ) ids = [item["id"] for item in items] documents = [item["text"] for item in items] embeddings = [item["vector"] for item in items] metadatas = [item["metadata"] for item in items] collection.upsert( ids=ids, documents=documents, embeddings=embeddings, metadatas=metadatas ) def delete( self, collection_name: str, ids: Optional[list[str]] = None, filter: Optional[dict] = None, ): # Delete the items from the collection based on the ids. collection = self.client.get_collection(name=collection_name) if collection: if ids: collection.delete(ids=ids) elif filter: collection.delete(where=filter) def reset(self): # Resets the database. This will delete all collections and item entries. return self.client.reset()