import time import logging import sys from aiocache import cached from typing import Any, Optional import random import json import inspect from fastapi import Request from starlette.responses import Response, StreamingResponse from open_webui.socket.main import ( get_event_call, get_event_emitter, ) from open_webui.routers.tasks import generate_queries from open_webui.models.users import UserModel from open_webui.models.functions import Functions from open_webui.models.models import Models from open_webui.retrieval.utils import get_sources_from_files from open_webui.utils.chat import generate_chat_completion from open_webui.utils.task import ( get_task_model_id, rag_template, tools_function_calling_generation_template, ) from open_webui.utils.misc import ( add_or_update_system_message, get_last_user_message, prepend_to_first_user_message_content, ) from open_webui.utils.tools import get_tools from open_webui.utils.plugin import load_function_module_by_id from open_webui.config import DEFAULT_TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE from open_webui.env import SRC_LOG_LEVELS, GLOBAL_LOG_LEVEL, BYPASS_MODEL_ACCESS_CONTROL from open_webui.constants import TASKS logging.basicConfig(stream=sys.stdout, level=GLOBAL_LOG_LEVEL) log = logging.getLogger(__name__) log.setLevel(SRC_LOG_LEVELS["MAIN"]) async def chat_completion_filter_functions_handler(request, body, model, extra_params): skip_files = None def get_filter_function_ids(model): def get_priority(function_id): function = Functions.get_function_by_id(function_id) if function is not None and hasattr(function, "valves"): # TODO: Fix FunctionModel return (function.valves if function.valves else {}).get("priority", 0) return 0 filter_ids = [ function.id for function in Functions.get_global_filter_functions() ] if "info" in model and "meta" in model["info"]: filter_ids.extend(model["info"]["meta"].get("filterIds", [])) filter_ids = list(set(filter_ids)) enabled_filter_ids = [ function.id for function in Functions.get_functions_by_type("filter", active_only=True) ] filter_ids = [ filter_id for filter_id in filter_ids if filter_id in enabled_filter_ids ] filter_ids.sort(key=get_priority) return filter_ids filter_ids = get_filter_function_ids(model) for filter_id in filter_ids: filter = Functions.get_function_by_id(filter_id) if not filter: continue if filter_id in request.app.state.FUNCTIONS: function_module = request.app.state.FUNCTIONS[filter_id] else: function_module, _, _ = load_function_module_by_id(filter_id) request.app.state.FUNCTIONS[filter_id] = function_module # Check if the function has a file_handler variable if hasattr(function_module, "file_handler"): skip_files = function_module.file_handler # Apply valves to the function if hasattr(function_module, "valves") and hasattr(function_module, "Valves"): valves = Functions.get_function_valves_by_id(filter_id) function_module.valves = function_module.Valves( **(valves if valves else {}) ) if hasattr(function_module, "inlet"): try: inlet = function_module.inlet # Create a dictionary of parameters to be passed to the function params = {"body": body} | { k: v for k, v in { **extra_params, "__model__": model, "__id__": filter_id, }.items() if k in inspect.signature(inlet).parameters } if "__user__" in params and hasattr(function_module, "UserValves"): try: params["__user__"]["valves"] = function_module.UserValves( **Functions.get_user_valves_by_id_and_user_id( filter_id, params["__user__"]["id"] ) ) except Exception as e: print(e) if inspect.iscoroutinefunction(inlet): body = await inlet(**params) else: body = inlet(**params) except Exception as e: print(f"Error: {e}") raise e if skip_files and "files" in body.get("metadata", {}): del body["metadata"]["files"] return body, {} async def chat_completion_tools_handler( request: Request, body: dict, user: UserModel, models, extra_params: dict ) -> tuple[dict, dict]: async def get_content_from_response(response) -> Optional[str]: content = None if hasattr(response, "body_iterator"): async for chunk in response.body_iterator: data = json.loads(chunk.decode("utf-8")) content = data["choices"][0]["message"]["content"] # Cleanup any remaining background tasks if necessary if response.background is not None: await response.background() else: content = response["choices"][0]["message"]["content"] return content def get_tools_function_calling_payload(messages, task_model_id, content): user_message = get_last_user_message(messages) history = "\n".join( f"{message['role'].upper()}: \"\"\"{message['content']}\"\"\"" for message in messages[::-1][:4] ) prompt = f"History:\n{history}\nQuery: {user_message}" return { "model": task_model_id, "messages": [ {"role": "system", "content": content}, {"role": "user", "content": f"Query: {prompt}"}, ], "stream": False, "metadata": {"task": str(TASKS.FUNCTION_CALLING)}, } # If tool_ids field is present, call the functions metadata = body.get("metadata", {}) tool_ids = metadata.get("tool_ids", None) log.debug(f"{tool_ids=}") if not tool_ids: return body, {} skip_files = False sources = [] task_model_id = get_task_model_id( body["model"], request.app.state.config.TASK_MODEL, request.app.state.config.TASK_MODEL_EXTERNAL, models, ) tools = get_tools( request, tool_ids, user, { **extra_params, "__model__": models[task_model_id], "__messages__": body["messages"], "__files__": metadata.get("files", []), }, ) log.info(f"{tools=}") specs = [tool["spec"] for tool in tools.values()] tools_specs = json.dumps(specs) if request.app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE != "": template = request.app.state.config.TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE else: template = DEFAULT_TOOLS_FUNCTION_CALLING_PROMPT_TEMPLATE tools_function_calling_prompt = tools_function_calling_generation_template( template, tools_specs ) log.info(f"{tools_function_calling_prompt=}") payload = get_tools_function_calling_payload( body["messages"], task_model_id, tools_function_calling_prompt ) try: response = await generate_chat_completion(request, form_data=payload, user=user) log.debug(f"{response=}") content = await get_content_from_response(response) log.debug(f"{content=}") if not content: return body, {} try: content = content[content.find("{") : content.rfind("}") + 1] if not content: raise Exception("No JSON object found in the response") result = json.loads(content) tool_function_name = result.get("name", None) if tool_function_name not in tools: return body, {} tool_function_params = result.get("parameters", {}) try: required_params = ( tools[tool_function_name] .get("spec", {}) .get("parameters", {}) .get("required", []) ) tool_function = tools[tool_function_name]["callable"] tool_function_params = { k: v for k, v in tool_function_params.items() if k in required_params } tool_output = await tool_function(**tool_function_params) except Exception as e: tool_output = str(e) if isinstance(tool_output, str): if tools[tool_function_name]["citation"]: sources.append( { "source": { "name": f"TOOL:{tools[tool_function_name]['toolkit_id']}/{tool_function_name}" }, "document": [tool_output], "metadata": [ { "source": f"TOOL:{tools[tool_function_name]['toolkit_id']}/{tool_function_name}" } ], } ) else: sources.append( { "source": {}, "document": [tool_output], "metadata": [ { "source": f"TOOL:{tools[tool_function_name]['toolkit_id']}/{tool_function_name}" } ], } ) if tools[tool_function_name]["file_handler"]: skip_files = True except Exception as e: log.exception(f"Error: {e}") content = None except Exception as e: log.exception(f"Error: {e}") content = None log.debug(f"tool_contexts: {sources}") if skip_files and "files" in body.get("metadata", {}): del body["metadata"]["files"] return body, {"sources": sources} async def chat_completion_files_handler( request: Request, body: dict, user: UserModel ) -> tuple[dict, dict[str, list]]: sources = [] if files := body.get("metadata", {}).get("files", None): try: queries_response = await generate_queries( { "model": body["model"], "messages": body["messages"], "type": "retrieval", }, user, ) queries_response = queries_response["choices"][0]["message"]["content"] try: bracket_start = queries_response.find("{") bracket_end = queries_response.rfind("}") + 1 if bracket_start == -1 or bracket_end == -1: raise Exception("No JSON object found in the response") queries_response = queries_response[bracket_start:bracket_end] queries_response = json.loads(queries_response) except Exception as e: queries_response = {"queries": [queries_response]} queries = queries_response.get("queries", []) except Exception as e: queries = [] if len(queries) == 0: queries = [get_last_user_message(body["messages"])] sources = get_sources_from_files( files=files, queries=queries, embedding_function=request.app.state.EMBEDDING_FUNCTION, k=request.app.state.config.TOP_K, reranking_function=request.app.state.rf, r=request.app.state.config.RELEVANCE_THRESHOLD, hybrid_search=request.app.state.config.ENABLE_RAG_HYBRID_SEARCH, ) log.debug(f"rag_contexts:sources: {sources}") return body, {"sources": sources} def apply_params_to_form_data(form_data, model): params = form_data.pop("params", {}) if model.get("ollama"): form_data["options"] = params if "format" in params: form_data["format"] = params["format"] if "keep_alive" in params: form_data["keep_alive"] = params["keep_alive"] else: if "seed" in params: form_data["seed"] = params["seed"] if "stop" in params: form_data["stop"] = params["stop"] if "temperature" in params: form_data["temperature"] = params["temperature"] if "top_p" in params: form_data["top_p"] = params["top_p"] if "frequency_penalty" in params: form_data["frequency_penalty"] = params["frequency_penalty"] return form_data async def process_chat_payload(request, form_data, metadata, user, model): form_data = apply_params_to_form_data(form_data, model) log.debug(f"form_data: {form_data}") extra_params = { "__event_emitter__": get_event_emitter(metadata), "__event_call__": get_event_call(metadata), "__user__": { "id": user.id, "email": user.email, "name": user.name, "role": user.role, }, "__metadata__": metadata, "__request__": request, } # Initialize events to store additional event to be sent to the client # Initialize contexts and citation models = request.app.state.MODELS events = [] sources = [] try: form_data, flags = await chat_completion_filter_functions_handler( request, form_data, model, extra_params ) except Exception as e: return Exception(f"Error: {e}") tool_ids = form_data.pop("tool_ids", None) files = form_data.pop("files", None) metadata = { **metadata, "tool_ids": tool_ids, "files": files, } form_data["metadata"] = metadata try: form_data, flags = await chat_completion_tools_handler( request, form_data, user, models, extra_params ) sources.extend(flags.get("sources", [])) except Exception as e: log.exception(e) try: form_data, flags = await chat_completion_files_handler(request, form_data, user) sources.extend(flags.get("sources", [])) except Exception as e: log.exception(e) # If context is not empty, insert it into the messages if len(sources) > 0: context_string = "" for source_idx, source in enumerate(sources): source_id = source.get("source", {}).get("name", "") if "document" in source: for doc_idx, doc_context in enumerate(source["document"]): metadata = source.get("metadata") doc_source_id = None if metadata: doc_source_id = metadata[doc_idx].get("source", source_id) if source_id: context_string += f"{doc_source_id if doc_source_id is not None else source_id}{doc_context}\n" else: # If there is no source_id, then do not include the source_id tag context_string += f"{doc_context}\n" context_string = context_string.strip() prompt = get_last_user_message(form_data["messages"]) if prompt is None: raise Exception("No user message found") if ( request.app.state.config.RELEVANCE_THRESHOLD == 0 and context_string.strip() == "" ): log.debug( f"With a 0 relevancy threshold for RAG, the context cannot be empty" ) # Workaround for Ollama 2.0+ system prompt issue # TODO: replace with add_or_update_system_message if model["owned_by"] == "ollama": form_data["messages"] = prepend_to_first_user_message_content( rag_template( request.app.state.config.RAG_TEMPLATE, context_string, prompt ), form_data["messages"], ) else: form_data["messages"] = add_or_update_system_message( rag_template( request.app.state.config.RAG_TEMPLATE, context_string, prompt ), form_data["messages"], ) # If there are citations, add them to the data_items sources = [source for source in sources if source.get("source", {}).get("name", "")] if len(sources) > 0: events.append({"sources": sources}) return form_data, events async def process_chat_response(response, events, metadata): if not isinstance(response, StreamingResponse): return response content_type = response.headers["Content-Type"] is_openai = "text/event-stream" in content_type is_ollama = "application/x-ndjson" in content_type if not is_openai and not is_ollama: return response async def stream_wrapper(original_generator, events): def wrap_item(item): return f"data: {item}\n\n" if is_openai else f"{item}\n" for event in events: yield wrap_item(json.dumps(event)) async for data in original_generator: yield data return StreamingResponse( stream_wrapper(response.body_iterator, events), headers=dict(response.headers), )