# syntax=docker/dockerfile:1 FROM node:alpine as build WORKDIR /app # wget embedding model weight from alpine (does not exist from slim-buster) RUN wget "https://chroma-onnx-models.s3.amazonaws.com/all-MiniLM-L6-v2/onnx.tar.gz" -O - | \ tar -xzf - -C /app COPY package.json package-lock.json ./ RUN npm ci COPY . . RUN npm run build FROM python:3.11-slim-bookworm as base ENV ENV=prod ENV PORT "" ENV OLLAMA_API_BASE_URL "/ollama/api" ENV OPENAI_API_BASE_URL "" ENV OPENAI_API_KEY "" ENV WEBUI_SECRET_KEY "" ENV SCARF_NO_ANALYTICS true ENV DO_NOT_TRACK true # whisper TTS Settings ENV WHISPER_MODEL="base" ENV WHISPER_MODEL_DIR="/app/backend/data/cache/whisper/models" # any sentence transformer model; models to use can be found at https://huggingface.co/models?library=sentence-transformers # Leaderboard: https://huggingface.co/spaces/mteb/leaderboard # for better persormance and multilangauge support use "intfloat/multilingual-e5-large" # IMPORTANT: If you change the default model (all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them. ENV DOCKER_SENTENCE_TRANSFORMER_EMBED_MODEL="all-MiniLM-L6-v2" WORKDIR /app/backend # install python dependencies COPY ./backend/requirements.txt ./requirements.txt RUN pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir RUN pip3 install -r requirements.txt --no-cache-dir # Install pandoc and netcat # RUN python -c "import pypandoc; pypandoc.download_pandoc()" RUN apt-get update \ && apt-get install -y pandoc netcat-openbsd \ && rm -rf /var/lib/apt/lists/* # preload embedding model RUN python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['DOCKER_SENTENCE_TRANSFORMER_EMBED_MODEL'])" # preload tts model RUN python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])" # copy embedding weight from build RUN mkdir -p /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2 COPY --from=build /app/onnx /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2/onnx # copy built frontend files COPY --from=build /app/build /app/build # copy backend files COPY ./backend . CMD [ "bash", "start.sh"]