import json import logging import mimetypes import os import shutil import uuid from datetime import datetime from pathlib import Path from typing import Iterator, List, Optional, Sequence, Union from fastapi import ( Depends, FastAPI, File, Form, HTTPException, UploadFile, Request, status, APIRouter, ) from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel import tiktoken from langchain.text_splitter import RecursiveCharacterTextSplitter, TokenTextSplitter from langchain_core.documents import Document from open_webui.models.files import FileModel, Files from open_webui.models.knowledge import Knowledges from open_webui.storage.provider import Storage from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT # Document loaders from open_webui.retrieval.loaders.main import Loader from open_webui.retrieval.loaders.youtube import YoutubeLoader # Web search engines from open_webui.retrieval.web.main import SearchResult from open_webui.retrieval.web.utils import get_web_loader from open_webui.retrieval.web.brave import search_brave from open_webui.retrieval.web.kagi import search_kagi from open_webui.retrieval.web.mojeek import search_mojeek from open_webui.retrieval.web.duckduckgo import search_duckduckgo from open_webui.retrieval.web.google_pse import search_google_pse from open_webui.retrieval.web.jina_search import search_jina from open_webui.retrieval.web.searchapi import search_searchapi from open_webui.retrieval.web.searxng import search_searxng from open_webui.retrieval.web.serper import search_serper from open_webui.retrieval.web.serply import search_serply from open_webui.retrieval.web.serpstack import search_serpstack from open_webui.retrieval.web.tavily import search_tavily from open_webui.retrieval.web.bing import search_bing from open_webui.retrieval.utils import ( get_embedding_function, get_model_path, query_collection, query_collection_with_hybrid_search, query_doc, query_doc_with_hybrid_search, ) from open_webui.utils.misc import ( calculate_sha256_string, ) from open_webui.utils.auth import get_admin_user, get_verified_user from open_webui.config import ( ENV, RAG_EMBEDDING_MODEL_AUTO_UPDATE, RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE, RAG_RERANKING_MODEL_AUTO_UPDATE, RAG_RERANKING_MODEL_TRUST_REMOTE_CODE, UPLOAD_DIR, DEFAULT_LOCALE, ) from open_webui.env import ( SRC_LOG_LEVELS, DEVICE_TYPE, DOCKER, ) from open_webui.constants import ERROR_MESSAGES log = logging.getLogger(__name__) log.setLevel(SRC_LOG_LEVELS["RAG"]) ########################################## # # Utility functions # ########################################## def get_ef( engine: str, embedding_model: str, auto_update: bool = False, ): ef = None if embedding_model and engine == "": from sentence_transformers import SentenceTransformer try: ef = SentenceTransformer( get_model_path(embedding_model, auto_update), device=DEVICE_TYPE, trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE, ) except Exception as e: log.debug(f"Error loading SentenceTransformer: {e}") return ef def get_rf( reranking_model: str, auto_update: bool = False, ): rf = None if reranking_model: if any(model in reranking_model for model in ["jinaai/jina-colbert-v2"]): try: from open_webui.retrieval.models.colbert import ColBERT rf = ColBERT( get_model_path(reranking_model, auto_update), env="docker" if DOCKER else None, ) except Exception as e: log.error(f"ColBERT: {e}") raise Exception(ERROR_MESSAGES.DEFAULT(e)) else: import sentence_transformers try: rf = sentence_transformers.CrossEncoder( get_model_path(reranking_model, auto_update), device=DEVICE_TYPE, trust_remote_code=RAG_RERANKING_MODEL_TRUST_REMOTE_CODE, ) except: log.error("CrossEncoder error") raise Exception(ERROR_MESSAGES.DEFAULT("CrossEncoder error")) return rf ########################################## # # API routes # ########################################## router = APIRouter() class CollectionNameForm(BaseModel): collection_name: Optional[str] = None class ProcessUrlForm(CollectionNameForm): url: str class SearchForm(CollectionNameForm): query: str @router.get("/") async def get_status(request: Request): return { "status": True, "chunk_size": request.app.state.config.CHUNK_SIZE, "chunk_overlap": request.app.state.config.CHUNK_OVERLAP, "template": request.app.state.config.RAG_TEMPLATE, "embedding_engine": request.app.state.config.RAG_EMBEDDING_ENGINE, "embedding_model": request.app.state.config.RAG_EMBEDDING_MODEL, "reranking_model": request.app.state.config.RAG_RERANKING_MODEL, "embedding_batch_size": request.app.state.config.RAG_EMBEDDING_BATCH_SIZE, } @router.get("/embedding") async def get_embedding_config(request: Request, user=Depends(get_admin_user)): return { "status": True, "embedding_engine": request.app.state.config.RAG_EMBEDDING_ENGINE, "embedding_model": request.app.state.config.RAG_EMBEDDING_MODEL, "embedding_batch_size": request.app.state.config.RAG_EMBEDDING_BATCH_SIZE, "openai_config": { "url": request.app.state.config.RAG_OPENAI_API_BASE_URL, "key": request.app.state.config.RAG_OPENAI_API_KEY, }, "ollama_config": { "url": request.app.state.config.RAG_OLLAMA_BASE_URL, "key": request.app.state.config.RAG_OLLAMA_API_KEY, }, } @router.get("/reranking") async def get_reraanking_config(request: Request, user=Depends(get_admin_user)): return { "status": True, "reranking_model": request.app.state.config.RAG_RERANKING_MODEL, } class OpenAIConfigForm(BaseModel): url: str key: str class OllamaConfigForm(BaseModel): url: str key: str class EmbeddingModelUpdateForm(BaseModel): openai_config: Optional[OpenAIConfigForm] = None ollama_config: Optional[OllamaConfigForm] = None embedding_engine: str embedding_model: str embedding_batch_size: Optional[int] = 1 @router.post("/embedding/update") async def update_embedding_config( request: Request, form_data: EmbeddingModelUpdateForm, user=Depends(get_admin_user) ): log.info( f"Updating embedding model: {request.app.state.config.RAG_EMBEDDING_MODEL} to {form_data.embedding_model}" ) try: request.app.state.config.RAG_EMBEDDING_ENGINE = form_data.embedding_engine request.app.state.config.RAG_EMBEDDING_MODEL = form_data.embedding_model if request.app.state.config.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]: if form_data.openai_config is not None: request.app.state.config.RAG_OPENAI_API_BASE_URL = ( form_data.openai_config.url ) request.app.state.config.RAG_OPENAI_API_KEY = ( form_data.openai_config.key ) if form_data.ollama_config is not None: request.app.state.config.RAG_OLLAMA_BASE_URL = ( form_data.ollama_config.url ) request.app.state.config.RAG_OLLAMA_API_KEY = ( form_data.ollama_config.key ) request.app.state.config.RAG_EMBEDDING_BATCH_SIZE = ( form_data.embedding_batch_size ) request.app.state.ef = get_ef( request.app.state.config.RAG_EMBEDDING_ENGINE, request.app.state.config.RAG_EMBEDDING_MODEL, ) request.app.state.EMBEDDING_FUNCTION = get_embedding_function( request.app.state.config.RAG_EMBEDDING_ENGINE, request.app.state.config.RAG_EMBEDDING_MODEL, request.app.state.ef, ( request.app.state.config.RAG_OPENAI_API_BASE_URL if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai" else request.app.state.config.RAG_OLLAMA_BASE_URL ), ( request.app.state.config.RAG_OPENAI_API_KEY if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai" else request.app.state.config.RAG_OLLAMA_API_KEY ), request.app.state.config.RAG_EMBEDDING_BATCH_SIZE, ) return { "status": True, "embedding_engine": request.app.state.config.RAG_EMBEDDING_ENGINE, "embedding_model": request.app.state.config.RAG_EMBEDDING_MODEL, "embedding_batch_size": request.app.state.config.RAG_EMBEDDING_BATCH_SIZE, "openai_config": { "url": request.app.state.config.RAG_OPENAI_API_BASE_URL, "key": request.app.state.config.RAG_OPENAI_API_KEY, }, "ollama_config": { "url": request.app.state.config.RAG_OLLAMA_BASE_URL, "key": request.app.state.config.RAG_OLLAMA_API_KEY, }, } except Exception as e: log.exception(f"Problem updating embedding model: {e}") raise HTTPException( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=ERROR_MESSAGES.DEFAULT(e), ) class RerankingModelUpdateForm(BaseModel): reranking_model: str @router.post("/reranking/update") async def update_reranking_config( request: Request, form_data: RerankingModelUpdateForm, user=Depends(get_admin_user) ): log.info( f"Updating reranking model: {request.app.state.config.RAG_RERANKING_MODEL} to {form_data.reranking_model}" ) try: request.app.state.config.RAG_RERANKING_MODEL = form_data.reranking_model try: request.app.state.rf = get_rf( request.app.state.config.RAG_RERANKING_MODEL, True, ) except Exception as e: log.error(f"Error loading reranking model: {e}") request.app.state.config.ENABLE_RAG_HYBRID_SEARCH = False return { "status": True, "reranking_model": request.app.state.config.RAG_RERANKING_MODEL, } except Exception as e: log.exception(f"Problem updating reranking model: {e}") raise HTTPException( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=ERROR_MESSAGES.DEFAULT(e), ) @router.get("/config") async def get_rag_config(request: Request, user=Depends(get_admin_user)): return { "status": True, "pdf_extract_images": request.app.state.config.PDF_EXTRACT_IMAGES, "enable_google_drive_integration": request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION, "content_extraction": { "engine": request.app.state.config.CONTENT_EXTRACTION_ENGINE, "tika_server_url": request.app.state.config.TIKA_SERVER_URL, }, "chunk": { "text_splitter": request.app.state.config.TEXT_SPLITTER, "chunk_size": request.app.state.config.CHUNK_SIZE, "chunk_overlap": request.app.state.config.CHUNK_OVERLAP, }, "file": { "max_size": request.app.state.config.FILE_MAX_SIZE, "max_count": request.app.state.config.FILE_MAX_COUNT, }, "youtube": { "language": request.app.state.config.YOUTUBE_LOADER_LANGUAGE, "translation": request.app.state.YOUTUBE_LOADER_TRANSLATION, "proxy_url": request.app.state.config.YOUTUBE_LOADER_PROXY_URL, }, "web": { "web_loader_ssl_verification": request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION, "search": { "enabled": request.app.state.config.ENABLE_RAG_WEB_SEARCH, "drive": request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION, "engine": request.app.state.config.RAG_WEB_SEARCH_ENGINE, "searxng_query_url": request.app.state.config.SEARXNG_QUERY_URL, "google_pse_api_key": request.app.state.config.GOOGLE_PSE_API_KEY, "google_pse_engine_id": request.app.state.config.GOOGLE_PSE_ENGINE_ID, "brave_search_api_key": request.app.state.config.BRAVE_SEARCH_API_KEY, "kagi_search_api_key": request.app.state.config.KAGI_SEARCH_API_KEY, "mojeek_search_api_key": request.app.state.config.MOJEEK_SEARCH_API_KEY, "serpstack_api_key": request.app.state.config.SERPSTACK_API_KEY, "serpstack_https": request.app.state.config.SERPSTACK_HTTPS, "serper_api_key": request.app.state.config.SERPER_API_KEY, "serply_api_key": request.app.state.config.SERPLY_API_KEY, "tavily_api_key": request.app.state.config.TAVILY_API_KEY, "searchapi_api_key": request.app.state.config.SEARCHAPI_API_KEY, "seaarchapi_engine": request.app.state.config.SEARCHAPI_ENGINE, "jina_api_key": request.app.state.config.JINA_API_KEY, "bing_search_v7_endpoint": request.app.state.config.BING_SEARCH_V7_ENDPOINT, "bing_search_v7_subscription_key": request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY, "result_count": request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, "concurrent_requests": request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS, }, }, } class FileConfig(BaseModel): max_size: Optional[int] = None max_count: Optional[int] = None class ContentExtractionConfig(BaseModel): engine: str = "" tika_server_url: Optional[str] = None class ChunkParamUpdateForm(BaseModel): text_splitter: Optional[str] = None chunk_size: int chunk_overlap: int class YoutubeLoaderConfig(BaseModel): language: list[str] translation: Optional[str] = None proxy_url: str = "" class WebSearchConfig(BaseModel): enabled: bool engine: Optional[str] = None searxng_query_url: Optional[str] = None google_pse_api_key: Optional[str] = None google_pse_engine_id: Optional[str] = None brave_search_api_key: Optional[str] = None kagi_search_api_key: Optional[str] = None mojeek_search_api_key: Optional[str] = None serpstack_api_key: Optional[str] = None serpstack_https: Optional[bool] = None serper_api_key: Optional[str] = None serply_api_key: Optional[str] = None tavily_api_key: Optional[str] = None searchapi_api_key: Optional[str] = None searchapi_engine: Optional[str] = None jina_api_key: Optional[str] = None bing_search_v7_endpoint: Optional[str] = None bing_search_v7_subscription_key: Optional[str] = None result_count: Optional[int] = None concurrent_requests: Optional[int] = None class WebConfig(BaseModel): search: WebSearchConfig web_loader_ssl_verification: Optional[bool] = None class ConfigUpdateForm(BaseModel): pdf_extract_images: Optional[bool] = None enable_google_drive_integration: Optional[bool] = None file: Optional[FileConfig] = None content_extraction: Optional[ContentExtractionConfig] = None chunk: Optional[ChunkParamUpdateForm] = None youtube: Optional[YoutubeLoaderConfig] = None web: Optional[WebConfig] = None @router.post("/config/update") async def update_rag_config( request: Request, form_data: ConfigUpdateForm, user=Depends(get_admin_user) ): request.app.state.config.PDF_EXTRACT_IMAGES = ( form_data.pdf_extract_images if form_data.pdf_extract_images is not None else request.app.state.config.PDF_EXTRACT_IMAGES ) request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION = ( form_data.enable_google_drive_integration if form_data.enable_google_drive_integration is not None else request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION ) if form_data.file is not None: request.app.state.config.FILE_MAX_SIZE = form_data.file.max_size request.app.state.config.FILE_MAX_COUNT = form_data.file.max_count if form_data.content_extraction is not None: log.info(f"Updating text settings: {form_data.content_extraction}") request.app.state.config.CONTENT_EXTRACTION_ENGINE = ( form_data.content_extraction.engine ) request.app.state.config.TIKA_SERVER_URL = ( form_data.content_extraction.tika_server_url ) if form_data.chunk is not None: request.app.state.config.TEXT_SPLITTER = form_data.chunk.text_splitter request.app.state.config.CHUNK_SIZE = form_data.chunk.chunk_size request.app.state.config.CHUNK_OVERLAP = form_data.chunk.chunk_overlap if form_data.youtube is not None: request.app.state.config.YOUTUBE_LOADER_LANGUAGE = form_data.youtube.language request.app.state.config.YOUTUBE_LOADER_PROXY_URL = form_data.youtube.proxy_url request.app.state.YOUTUBE_LOADER_TRANSLATION = form_data.youtube.translation if form_data.web is not None: request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION = ( # Note: When UI "Bypass SSL verification for Websites"=True then ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION=False form_data.web.web_loader_ssl_verification ) request.app.state.config.ENABLE_RAG_WEB_SEARCH = form_data.web.search.enabled request.app.state.config.RAG_WEB_SEARCH_ENGINE = form_data.web.search.engine request.app.state.config.SEARXNG_QUERY_URL = ( form_data.web.search.searxng_query_url ) request.app.state.config.GOOGLE_PSE_API_KEY = ( form_data.web.search.google_pse_api_key ) request.app.state.config.GOOGLE_PSE_ENGINE_ID = ( form_data.web.search.google_pse_engine_id ) request.app.state.config.BRAVE_SEARCH_API_KEY = ( form_data.web.search.brave_search_api_key ) request.app.state.config.KAGI_SEARCH_API_KEY = ( form_data.web.search.kagi_search_api_key ) request.app.state.config.MOJEEK_SEARCH_API_KEY = ( form_data.web.search.mojeek_search_api_key ) request.app.state.config.SERPSTACK_API_KEY = ( form_data.web.search.serpstack_api_key ) request.app.state.config.SERPSTACK_HTTPS = form_data.web.search.serpstack_https request.app.state.config.SERPER_API_KEY = form_data.web.search.serper_api_key request.app.state.config.SERPLY_API_KEY = form_data.web.search.serply_api_key request.app.state.config.TAVILY_API_KEY = form_data.web.search.tavily_api_key request.app.state.config.SEARCHAPI_API_KEY = ( form_data.web.search.searchapi_api_key ) request.app.state.config.SEARCHAPI_ENGINE = ( form_data.web.search.searchapi_engine ) request.app.state.config.JINA_API_KEY = form_data.web.search.jina_api_key request.app.state.config.BING_SEARCH_V7_ENDPOINT = ( form_data.web.search.bing_search_v7_endpoint ) request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY = ( form_data.web.search.bing_search_v7_subscription_key ) request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT = ( form_data.web.search.result_count ) request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS = ( form_data.web.search.concurrent_requests ) return { "status": True, "pdf_extract_images": request.app.state.config.PDF_EXTRACT_IMAGES, "file": { "max_size": request.app.state.config.FILE_MAX_SIZE, "max_count": request.app.state.config.FILE_MAX_COUNT, }, "content_extraction": { "engine": request.app.state.config.CONTENT_EXTRACTION_ENGINE, "tika_server_url": request.app.state.config.TIKA_SERVER_URL, }, "chunk": { "text_splitter": request.app.state.config.TEXT_SPLITTER, "chunk_size": request.app.state.config.CHUNK_SIZE, "chunk_overlap": request.app.state.config.CHUNK_OVERLAP, }, "youtube": { "language": request.app.state.config.YOUTUBE_LOADER_LANGUAGE, "proxy_url": request.app.state.config.YOUTUBE_LOADER_PROXY_URL, "translation": request.app.state.YOUTUBE_LOADER_TRANSLATION, }, "web": { "web_loader_ssl_verification": request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION, "search": { "enabled": request.app.state.config.ENABLE_RAG_WEB_SEARCH, "engine": request.app.state.config.RAG_WEB_SEARCH_ENGINE, "searxng_query_url": request.app.state.config.SEARXNG_QUERY_URL, "google_pse_api_key": request.app.state.config.GOOGLE_PSE_API_KEY, "google_pse_engine_id": request.app.state.config.GOOGLE_PSE_ENGINE_ID, "brave_search_api_key": request.app.state.config.BRAVE_SEARCH_API_KEY, "kagi_search_api_key": request.app.state.config.KAGI_SEARCH_API_KEY, "mojeek_search_api_key": request.app.state.config.MOJEEK_SEARCH_API_KEY, "serpstack_api_key": request.app.state.config.SERPSTACK_API_KEY, "serpstack_https": request.app.state.config.SERPSTACK_HTTPS, "serper_api_key": request.app.state.config.SERPER_API_KEY, "serply_api_key": request.app.state.config.SERPLY_API_KEY, "serachapi_api_key": request.app.state.config.SEARCHAPI_API_KEY, "searchapi_engine": request.app.state.config.SEARCHAPI_ENGINE, "tavily_api_key": request.app.state.config.TAVILY_API_KEY, "jina_api_key": request.app.state.config.JINA_API_KEY, "bing_search_v7_endpoint": request.app.state.config.BING_SEARCH_V7_ENDPOINT, "bing_search_v7_subscription_key": request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY, "result_count": request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, "concurrent_requests": request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS, }, }, } @router.get("/template") async def get_rag_template(request: Request, user=Depends(get_verified_user)): return { "status": True, "template": request.app.state.config.RAG_TEMPLATE, } @router.get("/query/settings") async def get_query_settings(request: Request, user=Depends(get_admin_user)): return { "status": True, "template": request.app.state.config.RAG_TEMPLATE, "k": request.app.state.config.TOP_K, "r": request.app.state.config.RELEVANCE_THRESHOLD, "hybrid": request.app.state.config.ENABLE_RAG_HYBRID_SEARCH, } class QuerySettingsForm(BaseModel): k: Optional[int] = None r: Optional[float] = None template: Optional[str] = None hybrid: Optional[bool] = None @router.post("/query/settings/update") async def update_query_settings( request: Request, form_data: QuerySettingsForm, user=Depends(get_admin_user) ): request.app.state.config.RAG_TEMPLATE = form_data.template request.app.state.config.TOP_K = form_data.k if form_data.k else 4 request.app.state.config.RELEVANCE_THRESHOLD = form_data.r if form_data.r else 0.0 request.app.state.config.ENABLE_RAG_HYBRID_SEARCH = ( form_data.hybrid if form_data.hybrid else False ) return { "status": True, "template": request.app.state.config.RAG_TEMPLATE, "k": request.app.state.config.TOP_K, "r": request.app.state.config.RELEVANCE_THRESHOLD, "hybrid": request.app.state.config.ENABLE_RAG_HYBRID_SEARCH, } #################################### # # Document process and retrieval # #################################### def save_docs_to_vector_db( request: Request, docs, collection_name, metadata: Optional[dict] = None, overwrite: bool = False, split: bool = True, add: bool = False, ) -> bool: def _get_docs_info(docs: list[Document]) -> str: docs_info = set() # Trying to select relevant metadata identifying the document. for doc in docs: metadata = getattr(doc, "metadata", {}) doc_name = metadata.get("name", "") if not doc_name: doc_name = metadata.get("title", "") if not doc_name: doc_name = metadata.get("source", "") if doc_name: docs_info.add(doc_name) return ", ".join(docs_info) log.info( f"save_docs_to_vector_db: document {_get_docs_info(docs)} {collection_name}" ) # Check if entries with the same hash (metadata.hash) already exist if metadata and "hash" in metadata: result = VECTOR_DB_CLIENT.query( collection_name=collection_name, filter={"hash": metadata["hash"]}, ) if result is not None: existing_doc_ids = result.ids[0] if existing_doc_ids: log.info(f"Document with hash {metadata['hash']} already exists") raise ValueError(ERROR_MESSAGES.DUPLICATE_CONTENT) if split: if request.app.state.config.TEXT_SPLITTER in ["", "character"]: text_splitter = RecursiveCharacterTextSplitter( chunk_size=request.app.state.config.CHUNK_SIZE, chunk_overlap=request.app.state.config.CHUNK_OVERLAP, add_start_index=True, ) elif request.app.state.config.TEXT_SPLITTER == "token": log.info( f"Using token text splitter: {request.app.state.config.TIKTOKEN_ENCODING_NAME}" ) tiktoken.get_encoding(str(request.app.state.config.TIKTOKEN_ENCODING_NAME)) text_splitter = TokenTextSplitter( encoding_name=str(request.app.state.config.TIKTOKEN_ENCODING_NAME), chunk_size=request.app.state.config.CHUNK_SIZE, chunk_overlap=request.app.state.config.CHUNK_OVERLAP, add_start_index=True, ) else: raise ValueError(ERROR_MESSAGES.DEFAULT("Invalid text splitter")) docs = text_splitter.split_documents(docs) if len(docs) == 0: raise ValueError(ERROR_MESSAGES.EMPTY_CONTENT) texts = [doc.page_content for doc in docs] metadatas = [ { **doc.metadata, **(metadata if metadata else {}), "embedding_config": json.dumps( { "engine": request.app.state.config.RAG_EMBEDDING_ENGINE, "model": request.app.state.config.RAG_EMBEDDING_MODEL, } ), } for doc in docs ] # ChromaDB does not like datetime formats # for meta-data so convert them to string. for metadata in metadatas: for key, value in metadata.items(): if isinstance(value, datetime): metadata[key] = str(value) try: if VECTOR_DB_CLIENT.has_collection(collection_name=collection_name): log.info(f"collection {collection_name} already exists") if overwrite: VECTOR_DB_CLIENT.delete_collection(collection_name=collection_name) log.info(f"deleting existing collection {collection_name}") elif add is False: log.info( f"collection {collection_name} already exists, overwrite is False and add is False" ) return True log.info(f"adding to collection {collection_name}") embedding_function = get_embedding_function( request.app.state.config.RAG_EMBEDDING_ENGINE, request.app.state.config.RAG_EMBEDDING_MODEL, request.app.state.ef, ( request.app.state.config.RAG_OPENAI_API_BASE_URL if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai" else request.app.state.config.RAG_OLLAMA_BASE_URL ), ( request.app.state.config.RAG_OPENAI_API_KEY if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai" else request.app.state.config.RAG_OLLAMA_API_KEY ), request.app.state.config.RAG_EMBEDDING_BATCH_SIZE, ) embeddings = embedding_function( list(map(lambda x: x.replace("\n", " "), texts)) ) items = [ { "id": str(uuid.uuid4()), "text": text, "vector": embeddings[idx], "metadata": metadatas[idx], } for idx, text in enumerate(texts) ] VECTOR_DB_CLIENT.insert( collection_name=collection_name, items=items, ) return True except Exception as e: log.exception(e) raise e class ProcessFileForm(BaseModel): file_id: str content: Optional[str] = None collection_name: Optional[str] = None @router.post("/process/file") def process_file( request: Request, form_data: ProcessFileForm, user=Depends(get_verified_user), ): try: file = Files.get_file_by_id(form_data.file_id) collection_name = form_data.collection_name if collection_name is None: collection_name = f"file-{file.id}" if form_data.content: # Update the content in the file # Usage: /files/{file_id}/data/content/update VECTOR_DB_CLIENT.delete_collection(collection_name=f"file-{file.id}") docs = [ Document( page_content=form_data.content.replace("
", "\n"), metadata={ **file.meta, "name": file.filename, "created_by": file.user_id, "file_id": file.id, "source": file.filename, }, ) ] text_content = form_data.content elif form_data.collection_name: # Check if the file has already been processed and save the content # Usage: /knowledge/{id}/file/add, /knowledge/{id}/file/update result = VECTOR_DB_CLIENT.query( collection_name=f"file-{file.id}", filter={"file_id": file.id} ) if result is not None and len(result.ids[0]) > 0: docs = [ Document( page_content=result.documents[0][idx], metadata=result.metadatas[0][idx], ) for idx, id in enumerate(result.ids[0]) ] else: docs = [ Document( page_content=file.data.get("content", ""), metadata={ **file.meta, "name": file.filename, "created_by": file.user_id, "file_id": file.id, "source": file.filename, }, ) ] text_content = file.data.get("content", "") else: # Process the file and save the content # Usage: /files/ file_path = file.path if file_path: file_path = Storage.get_file(file_path) loader = Loader( engine=request.app.state.config.CONTENT_EXTRACTION_ENGINE, TIKA_SERVER_URL=request.app.state.config.TIKA_SERVER_URL, PDF_EXTRACT_IMAGES=request.app.state.config.PDF_EXTRACT_IMAGES, ) docs = loader.load( file.filename, file.meta.get("content_type"), file_path ) docs = [ Document( page_content=doc.page_content, metadata={ **doc.metadata, "name": file.filename, "created_by": file.user_id, "file_id": file.id, "source": file.filename, }, ) for doc in docs ] else: docs = [ Document( page_content=file.data.get("content", ""), metadata={ **file.meta, "name": file.filename, "created_by": file.user_id, "file_id": file.id, "source": file.filename, }, ) ] text_content = " ".join([doc.page_content for doc in docs]) log.debug(f"text_content: {text_content}") Files.update_file_data_by_id( file.id, {"content": text_content}, ) hash = calculate_sha256_string(text_content) Files.update_file_hash_by_id(file.id, hash) try: result = save_docs_to_vector_db( request, docs=docs, collection_name=collection_name, metadata={ "file_id": file.id, "name": file.filename, "hash": hash, }, add=(True if form_data.collection_name else False), ) if result: Files.update_file_metadata_by_id( file.id, { "collection_name": collection_name, }, ) return { "status": True, "collection_name": collection_name, "filename": file.filename, "content": text_content, } except Exception as e: raise e except Exception as e: log.exception(e) if "No pandoc was found" in str(e): raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED, ) else: raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=str(e), ) class ProcessTextForm(BaseModel): name: str content: str collection_name: Optional[str] = None @router.post("/process/text") def process_text( request: Request, form_data: ProcessTextForm, user=Depends(get_verified_user), ): collection_name = form_data.collection_name if collection_name is None: collection_name = calculate_sha256_string(form_data.content) docs = [ Document( page_content=form_data.content, metadata={"name": form_data.name, "created_by": user.id}, ) ] text_content = form_data.content log.debug(f"text_content: {text_content}") result = save_docs_to_vector_db(request, docs, collection_name) if result: return { "status": True, "collection_name": collection_name, "content": text_content, } else: raise HTTPException( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=ERROR_MESSAGES.DEFAULT(), ) @router.post("/process/youtube") def process_youtube_video( request: Request, form_data: ProcessUrlForm, user=Depends(get_verified_user) ): try: collection_name = form_data.collection_name if not collection_name: collection_name = calculate_sha256_string(form_data.url)[:63] loader = YoutubeLoader( form_data.url, language=request.app.state.config.YOUTUBE_LOADER_LANGUAGE, proxy_url=request.app.state.config.YOUTUBE_LOADER_PROXY_URL, ) docs = loader.load() content = " ".join([doc.page_content for doc in docs]) log.debug(f"text_content: {content}") save_docs_to_vector_db(request, docs, collection_name, overwrite=True) return { "status": True, "collection_name": collection_name, "filename": form_data.url, "file": { "data": { "content": content, }, "meta": { "name": form_data.url, }, }, } except Exception as e: log.exception(e) raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=ERROR_MESSAGES.DEFAULT(e), ) @router.post("/process/web") def process_web( request: Request, form_data: ProcessUrlForm, user=Depends(get_verified_user) ): try: collection_name = form_data.collection_name if not collection_name: collection_name = calculate_sha256_string(form_data.url)[:63] loader = get_web_loader( form_data.url, verify_ssl=request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION, requests_per_second=request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS, ) docs = loader.load() content = " ".join([doc.page_content for doc in docs]) log.debug(f"text_content: {content}") save_docs_to_vector_db(request, docs, collection_name, overwrite=True) return { "status": True, "collection_name": collection_name, "filename": form_data.url, "file": { "data": { "content": content, }, "meta": { "name": form_data.url, }, }, } except Exception as e: log.exception(e) raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=ERROR_MESSAGES.DEFAULT(e), ) def search_web(request: Request, engine: str, query: str) -> list[SearchResult]: """Search the web using a search engine and return the results as a list of SearchResult objects. Will look for a search engine API key in environment variables in the following order: - SEARXNG_QUERY_URL - GOOGLE_PSE_API_KEY + GOOGLE_PSE_ENGINE_ID - BRAVE_SEARCH_API_KEY - KAGI_SEARCH_API_KEY - MOJEEK_SEARCH_API_KEY - SERPSTACK_API_KEY - SERPER_API_KEY - SERPLY_API_KEY - TAVILY_API_KEY - SEARCHAPI_API_KEY + SEARCHAPI_ENGINE (by default `google`) Args: query (str): The query to search for """ # TODO: add playwright to search the web if engine == "searxng": if request.app.state.config.SEARXNG_QUERY_URL: return search_searxng( request.app.state.config.SEARXNG_QUERY_URL, query, request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, ) else: raise Exception("No SEARXNG_QUERY_URL found in environment variables") elif engine == "google_pse": if ( request.app.state.config.GOOGLE_PSE_API_KEY and request.app.state.config.GOOGLE_PSE_ENGINE_ID ): return search_google_pse( request.app.state.config.GOOGLE_PSE_API_KEY, request.app.state.config.GOOGLE_PSE_ENGINE_ID, query, request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, ) else: raise Exception( "No GOOGLE_PSE_API_KEY or GOOGLE_PSE_ENGINE_ID found in environment variables" ) elif engine == "brave": if request.app.state.config.BRAVE_SEARCH_API_KEY: return search_brave( request.app.state.config.BRAVE_SEARCH_API_KEY, query, request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, ) else: raise Exception("No BRAVE_SEARCH_API_KEY found in environment variables") elif engine == "kagi": if request.app.state.config.KAGI_SEARCH_API_KEY: return search_kagi( request.app.state.config.KAGI_SEARCH_API_KEY, query, request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, ) else: raise Exception("No KAGI_SEARCH_API_KEY found in environment variables") elif engine == "mojeek": if request.app.state.config.MOJEEK_SEARCH_API_KEY: return search_mojeek( request.app.state.config.MOJEEK_SEARCH_API_KEY, query, request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, ) else: raise Exception("No MOJEEK_SEARCH_API_KEY found in environment variables") elif engine == "serpstack": if request.app.state.config.SERPSTACK_API_KEY: return search_serpstack( request.app.state.config.SERPSTACK_API_KEY, query, request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, https_enabled=request.app.state.config.SERPSTACK_HTTPS, ) else: raise Exception("No SERPSTACK_API_KEY found in environment variables") elif engine == "serper": if request.app.state.config.SERPER_API_KEY: return search_serper( request.app.state.config.SERPER_API_KEY, query, request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, ) else: raise Exception("No SERPER_API_KEY found in environment variables") elif engine == "serply": if request.app.state.config.SERPLY_API_KEY: return search_serply( request.app.state.config.SERPLY_API_KEY, query, request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, ) else: raise Exception("No SERPLY_API_KEY found in environment variables") elif engine == "duckduckgo": return search_duckduckgo( query, request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, ) elif engine == "tavily": if request.app.state.config.TAVILY_API_KEY: return search_tavily( request.app.state.config.TAVILY_API_KEY, query, request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, ) else: raise Exception("No TAVILY_API_KEY found in environment variables") elif engine == "searchapi": if request.app.state.config.SEARCHAPI_API_KEY: return search_searchapi( request.app.state.config.SEARCHAPI_API_KEY, request.app.state.config.SEARCHAPI_ENGINE, query, request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, ) else: raise Exception("No SEARCHAPI_API_KEY found in environment variables") elif engine == "jina": return search_jina( request.app.state.config.JINA_API_KEY, query, request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, ) elif engine == "bing": return search_bing( request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY, request.app.state.config.BING_SEARCH_V7_ENDPOINT, str(DEFAULT_LOCALE), query, request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, ) else: raise Exception("No search engine API key found in environment variables") @router.post("/process/web/search") def process_web_search( request: Request, form_data: SearchForm, user=Depends(get_verified_user) ): try: logging.info( f"trying to web search with {request.app.state.config.RAG_WEB_SEARCH_ENGINE, form_data.query}" ) web_results = search_web( request, request.app.state.config.RAG_WEB_SEARCH_ENGINE, form_data.query ) except Exception as e: log.exception(e) raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=ERROR_MESSAGES.WEB_SEARCH_ERROR(e), ) log.debug(f"web_results: {web_results}") try: collection_name = form_data.collection_name if collection_name == "" or collection_name is None: collection_name = f"web-search-{calculate_sha256_string(form_data.query)}"[ :63 ] urls = [result.link for result in web_results] loader = get_web_loader( urls, verify_ssl=request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION, requests_per_second=request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS, ) docs = loader.load() save_docs_to_vector_db(request, docs, collection_name, overwrite=True) return { "status": True, "collection_name": collection_name, "filenames": urls, } except Exception as e: log.exception(e) raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=ERROR_MESSAGES.DEFAULT(e), ) class QueryDocForm(BaseModel): collection_name: str query: str k: Optional[int] = None r: Optional[float] = None hybrid: Optional[bool] = None @router.post("/query/doc") def query_doc_handler( request: Request, form_data: QueryDocForm, user=Depends(get_verified_user), ): try: if request.app.state.config.ENABLE_RAG_HYBRID_SEARCH: return query_doc_with_hybrid_search( collection_name=form_data.collection_name, query=form_data.query, embedding_function=request.app.state.EMBEDDING_FUNCTION, k=form_data.k if form_data.k else request.app.state.config.TOP_K, reranking_function=request.app.state.rf, r=( form_data.r if form_data.r else request.app.state.config.RELEVANCE_THRESHOLD ), ) else: return query_doc( collection_name=form_data.collection_name, query_embedding=request.app.state.EMBEDDING_FUNCTION(form_data.query), k=form_data.k if form_data.k else request.app.state.config.TOP_K, ) except Exception as e: log.exception(e) raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=ERROR_MESSAGES.DEFAULT(e), ) class QueryCollectionsForm(BaseModel): collection_names: list[str] query: str k: Optional[int] = None r: Optional[float] = None hybrid: Optional[bool] = None @router.post("/query/collection") def query_collection_handler( request: Request, form_data: QueryCollectionsForm, user=Depends(get_verified_user), ): try: if request.app.state.config.ENABLE_RAG_HYBRID_SEARCH: return query_collection_with_hybrid_search( collection_names=form_data.collection_names, queries=[form_data.query], embedding_function=request.app.state.EMBEDDING_FUNCTION, k=form_data.k if form_data.k else request.app.state.config.TOP_K, reranking_function=request.app.state.rf, r=( form_data.r if form_data.r else request.app.state.config.RELEVANCE_THRESHOLD ), ) else: return query_collection( collection_names=form_data.collection_names, queries=[form_data.query], embedding_function=request.app.state.EMBEDDING_FUNCTION, k=form_data.k if form_data.k else request.app.state.config.TOP_K, ) except Exception as e: log.exception(e) raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=ERROR_MESSAGES.DEFAULT(e), ) #################################### # # Vector DB operations # #################################### class DeleteForm(BaseModel): collection_name: str file_id: str @router.post("/delete") def delete_entries_from_collection(form_data: DeleteForm, user=Depends(get_admin_user)): try: if VECTOR_DB_CLIENT.has_collection(collection_name=form_data.collection_name): file = Files.get_file_by_id(form_data.file_id) hash = file.hash VECTOR_DB_CLIENT.delete( collection_name=form_data.collection_name, metadata={"hash": hash}, ) return {"status": True} else: return {"status": False} except Exception as e: log.exception(e) return {"status": False} @router.post("/reset/db") def reset_vector_db(user=Depends(get_admin_user)): VECTOR_DB_CLIENT.reset() Knowledges.delete_all_knowledge() @router.post("/reset/uploads") def reset_upload_dir(user=Depends(get_admin_user)) -> bool: folder = f"{UPLOAD_DIR}" try: # Check if the directory exists if os.path.exists(folder): # Iterate over all the files and directories in the specified directory for filename in os.listdir(folder): file_path = os.path.join(folder, filename) try: if os.path.isfile(file_path) or os.path.islink(file_path): os.unlink(file_path) # Remove the file or link elif os.path.isdir(file_path): shutil.rmtree(file_path) # Remove the directory except Exception as e: print(f"Failed to delete {file_path}. Reason: {e}") else: print(f"The directory {folder} does not exist") except Exception as e: print(f"Failed to process the directory {folder}. Reason: {e}") return True if ENV == "dev": @router.get("/ef/{text}") async def get_embeddings(request: Request, text: Optional[str] = "Hello World!"): return {"result": request.app.state.EMBEDDING_FUNCTION(text)} class BatchProcessFilesForm(BaseModel): files: List[FileModel] collection_name: str class BatchProcessFilesResult(BaseModel): file_id: str status: str error: Optional[str] = None class BatchProcessFilesResponse(BaseModel): results: List[BatchProcessFilesResult] errors: List[BatchProcessFilesResult] @router.post("/process/files/batch") def process_files_batch( form_data: BatchProcessFilesForm, user=Depends(get_verified_user), ) -> BatchProcessFilesResponse: """ Process a batch of files and save them to the vector database. """ results: List[BatchProcessFilesResult] = [] errors: List[BatchProcessFilesResult] = [] collection_name = form_data.collection_name # Prepare all documents first all_docs: List[Document] = [] for file in form_data.files: try: text_content = file.data.get("content", "") docs: List[Document] = [ Document( page_content=text_content.replace("
", "\n"), metadata={ **file.meta, "name": file.filename, "created_by": file.user_id, "file_id": file.id, "source": file.filename, }, ) ] hash = calculate_sha256_string(text_content) Files.update_file_hash_by_id(file.id, hash) Files.update_file_data_by_id(file.id, {"content": text_content}) all_docs.extend(docs) results.append(BatchProcessFilesResult(file_id=file.id, status="prepared")) except Exception as e: log.error(f"process_files_batch: Error processing file {file.id}: {str(e)}") errors.append( BatchProcessFilesResult(file_id=file.id, status="failed", error=str(e)) ) # Save all documents in one batch if all_docs: try: save_docs_to_vector_db( docs=all_docs, collection_name=collection_name, add=True ) # Update all files with collection name for result in results: Files.update_file_metadata_by_id( result.file_id, {"collection_name": collection_name} ) result.status = "completed" except Exception as e: log.error( f"process_files_batch: Error saving documents to vector DB: {str(e)}" ) for result in results: result.status = "failed" errors.append( BatchProcessFilesResult(file_id=result.file_id, error=str(e)) ) return BatchProcessFilesResponse(results=results, errors=errors)