import hashlib import json import logging import os import uuid from functools import lru_cache from pathlib import Path from pydub import AudioSegment from pydub.silence import split_on_silence import aiohttp import aiofiles import requests from fastapi import ( Depends, FastAPI, File, HTTPException, Request, UploadFile, status, APIRouter, ) from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import FileResponse from pydantic import BaseModel from open_webui.utils.auth import get_admin_user, get_verified_user from open_webui.config import ( WHISPER_MODEL_AUTO_UPDATE, WHISPER_MODEL_DIR, CACHE_DIR, ) from open_webui.constants import ERROR_MESSAGES from open_webui.env import ( ENV, SRC_LOG_LEVELS, DEVICE_TYPE, ENABLE_FORWARD_USER_INFO_HEADERS, ) router = APIRouter() # Constants MAX_FILE_SIZE_MB = 25 MAX_FILE_SIZE = MAX_FILE_SIZE_MB * 1024 * 1024 # Convert MB to bytes log = logging.getLogger(__name__) log.setLevel(SRC_LOG_LEVELS["AUDIO"]) SPEECH_CACHE_DIR = Path(CACHE_DIR).joinpath("./audio/speech/") SPEECH_CACHE_DIR.mkdir(parents=True, exist_ok=True) ########################################## # # Utility functions # ########################################## from pydub import AudioSegment from pydub.utils import mediainfo def is_mp4_audio(file_path): """Check if the given file is an MP4 audio file.""" if not os.path.isfile(file_path): print(f"File not found: {file_path}") return False info = mediainfo(file_path) if ( info.get("codec_name") == "aac" and info.get("codec_type") == "audio" and info.get("codec_tag_string") == "mp4a" ): return True return False def convert_mp4_to_wav(file_path, output_path): """Convert MP4 audio file to WAV format.""" audio = AudioSegment.from_file(file_path, format="mp4") audio.export(output_path, format="wav") print(f"Converted {file_path} to {output_path}") def set_faster_whisper_model(model: str, auto_update: bool = False): whisper_model = None if model: from faster_whisper import WhisperModel faster_whisper_kwargs = { "model_size_or_path": model, "device": DEVICE_TYPE if DEVICE_TYPE and DEVICE_TYPE == "cuda" else "cpu", "compute_type": "int8", "download_root": WHISPER_MODEL_DIR, "local_files_only": not auto_update, } try: whisper_model = WhisperModel(**faster_whisper_kwargs) except Exception: log.warning( "WhisperModel initialization failed, attempting download with local_files_only=False" ) faster_whisper_kwargs["local_files_only"] = False whisper_model = WhisperModel(**faster_whisper_kwargs) return whisper_model ########################################## # # Audio API # ########################################## class TTSConfigForm(BaseModel): OPENAI_API_BASE_URL: str OPENAI_API_KEY: str API_KEY: str ENGINE: str MODEL: str VOICE: str SPLIT_ON: str AZURE_SPEECH_REGION: str AZURE_SPEECH_OUTPUT_FORMAT: str class STTConfigForm(BaseModel): OPENAI_API_BASE_URL: str OPENAI_API_KEY: str ENGINE: str MODEL: str WHISPER_MODEL: str class AudioConfigUpdateForm(BaseModel): tts: TTSConfigForm stt: STTConfigForm @router.get("/config") async def get_audio_config(request: Request, user=Depends(get_admin_user)): return { "tts": { "OPENAI_API_BASE_URL": request.app.state.config.TTS_OPENAI_API_BASE_URL, "OPENAI_API_KEY": request.app.state.config.TTS_OPENAI_API_KEY, "API_KEY": request.app.state.config.TTS_API_KEY, "ENGINE": request.app.state.config.TTS_ENGINE, "MODEL": request.app.state.config.TTS_MODEL, "VOICE": request.app.state.config.TTS_VOICE, "SPLIT_ON": request.app.state.config.TTS_SPLIT_ON, "AZURE_SPEECH_REGION": request.app.state.config.TTS_AZURE_SPEECH_REGION, "AZURE_SPEECH_OUTPUT_FORMAT": request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT, }, "stt": { "OPENAI_API_BASE_URL": request.app.state.config.STT_OPENAI_API_BASE_URL, "OPENAI_API_KEY": request.app.state.config.STT_OPENAI_API_KEY, "ENGINE": request.app.state.config.STT_ENGINE, "MODEL": request.app.state.config.STT_MODEL, "WHISPER_MODEL": request.app.state.config.WHISPER_MODEL, }, } @router.post("/config/update") async def update_audio_config( request: Request, form_data: AudioConfigUpdateForm, user=Depends(get_admin_user) ): request.app.state.config.TTS_OPENAI_API_BASE_URL = form_data.tts.OPENAI_API_BASE_URL request.app.state.config.TTS_OPENAI_API_KEY = form_data.tts.OPENAI_API_KEY request.app.state.config.TTS_API_KEY = form_data.tts.API_KEY request.app.state.config.TTS_ENGINE = form_data.tts.ENGINE request.app.state.config.TTS_MODEL = form_data.tts.MODEL request.app.state.config.TTS_VOICE = form_data.tts.VOICE request.app.state.config.TTS_SPLIT_ON = form_data.tts.SPLIT_ON request.app.state.config.TTS_AZURE_SPEECH_REGION = form_data.tts.AZURE_SPEECH_REGION request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT = ( form_data.tts.AZURE_SPEECH_OUTPUT_FORMAT ) request.app.state.config.STT_OPENAI_API_BASE_URL = form_data.stt.OPENAI_API_BASE_URL request.app.state.config.STT_OPENAI_API_KEY = form_data.stt.OPENAI_API_KEY request.app.state.config.STT_ENGINE = form_data.stt.ENGINE request.app.state.config.STT_MODEL = form_data.stt.MODEL request.app.state.config.WHISPER_MODEL = form_data.stt.WHISPER_MODEL if request.app.state.config.STT_ENGINE == "": request.app.state.faster_whisper_model = set_faster_whisper_model( form_data.stt.WHISPER_MODEL, WHISPER_MODEL_AUTO_UPDATE ) return { "tts": { "OPENAI_API_BASE_URL": request.app.state.config.TTS_OPENAI_API_BASE_URL, "OPENAI_API_KEY": request.app.state.config.TTS_OPENAI_API_KEY, "API_KEY": request.app.state.config.TTS_API_KEY, "ENGINE": request.app.state.config.TTS_ENGINE, "MODEL": request.app.state.config.TTS_MODEL, "VOICE": request.app.state.config.TTS_VOICE, "SPLIT_ON": request.app.state.config.TTS_SPLIT_ON, "AZURE_SPEECH_REGION": request.app.state.config.TTS_AZURE_SPEECH_REGION, "AZURE_SPEECH_OUTPUT_FORMAT": request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT, }, "stt": { "OPENAI_API_BASE_URL": request.app.state.config.STT_OPENAI_API_BASE_URL, "OPENAI_API_KEY": request.app.state.config.STT_OPENAI_API_KEY, "ENGINE": request.app.state.config.STT_ENGINE, "MODEL": request.app.state.config.STT_MODEL, "WHISPER_MODEL": request.app.state.config.WHISPER_MODEL, }, } def load_speech_pipeline(request): from transformers import pipeline from datasets import load_dataset if request.app.state.speech_synthesiser is None: request.app.state.speech_synthesiser = pipeline( "text-to-speech", "microsoft/speecht5_tts" ) if request.app.state.speech_speaker_embeddings_dataset is None: request.app.state.speech_speaker_embeddings_dataset = load_dataset( "Matthijs/cmu-arctic-xvectors", split="validation" ) @router.post("/speech") async def speech(request: Request, user=Depends(get_verified_user)): body = await request.body() name = hashlib.sha256( body + str(request.app.state.config.TTS_ENGINE).encode("utf-8") + str(request.app.state.config.TTS_MODEL).encode("utf-8") ).hexdigest() file_path = SPEECH_CACHE_DIR.joinpath(f"{name}.mp3") file_body_path = SPEECH_CACHE_DIR.joinpath(f"{name}.json") # Check if the file already exists in the cache if file_path.is_file(): return FileResponse(file_path) payload = None try: payload = json.loads(body.decode("utf-8")) except Exception as e: log.exception(e) raise HTTPException(status_code=400, detail="Invalid JSON payload") if request.app.state.config.TTS_ENGINE == "openai": payload["model"] = request.app.state.config.TTS_MODEL try: # print(payload) async with aiohttp.ClientSession() as session: async with session.post( url=f"{request.app.state.config.TTS_OPENAI_API_BASE_URL}/audio/speech", json=payload, headers={ "Content-Type": "application/json", "Authorization": f"Bearer {request.app.state.config.TTS_OPENAI_API_KEY}", **( { "X-OpenWebUI-User-Name": user.name, "X-OpenWebUI-User-Id": user.id, "X-OpenWebUI-User-Email": user.email, "X-OpenWebUI-User-Role": user.role, } if ENABLE_FORWARD_USER_INFO_HEADERS else {} ), }, ) as r: r.raise_for_status() async with aiofiles.open(file_path, "wb") as f: await f.write(await r.read()) async with aiofiles.open(file_body_path, "w") as f: await f.write(json.dumps(payload)) return FileResponse(file_path) except Exception as e: log.exception(e) detail = None try: if r.status != 200: res = await r.json() if "error" in res: detail = f"External: {res['error'].get('message', '')}" except Exception: detail = f"External: {e}" raise HTTPException( status_code=getattr(r, "status", 500), detail=detail if detail else "Open WebUI: Server Connection Error", ) elif request.app.state.config.TTS_ENGINE == "elevenlabs": voice_id = payload.get("voice", "") if voice_id not in get_available_voices(request): raise HTTPException( status_code=400, detail="Invalid voice id", ) try: async with aiohttp.ClientSession() as session: async with session.post( f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}", json={ "text": payload["input"], "model_id": request.app.state.config.TTS_MODEL, "voice_settings": {"stability": 0.5, "similarity_boost": 0.5}, }, headers={ "Accept": "audio/mpeg", "Content-Type": "application/json", "xi-api-key": request.app.state.config.TTS_API_KEY, }, ) as r: r.raise_for_status() async with aiofiles.open(file_path, "wb") as f: await f.write(await r.read()) async with aiofiles.open(file_body_path, "w") as f: await f.write(json.dumps(payload)) return FileResponse(file_path) except Exception as e: log.exception(e) detail = None try: if r.status != 200: res = await r.json() if "error" in res: detail = f"External: {res['error'].get('message', '')}" except Exception: detail = f"External: {e}" raise HTTPException( status_code=getattr(r, "status", 500), detail=detail if detail else "Open WebUI: Server Connection Error", ) elif request.app.state.config.TTS_ENGINE == "azure": try: payload = json.loads(body.decode("utf-8")) except Exception as e: log.exception(e) raise HTTPException(status_code=400, detail="Invalid JSON payload") region = request.app.state.config.TTS_AZURE_SPEECH_REGION language = request.app.state.config.TTS_VOICE locale = "-".join(request.app.state.config.TTS_VOICE.split("-")[:1]) output_format = request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT try: data = f""" {payload["input"]} """ async with aiohttp.ClientSession() as session: async with session.post( f"https://{region}.tts.speech.microsoft.com/cognitiveservices/v1", headers={ "Ocp-Apim-Subscription-Key": request.app.state.config.TTS_API_KEY, "Content-Type": "application/ssml+xml", "X-Microsoft-OutputFormat": output_format, }, data=data, ) as r: r.raise_for_status() async with aiofiles.open(file_path, "wb") as f: await f.write(await r.read()) async with aiofiles.open(file_body_path, "w") as f: await f.write(json.dumps(payload)) return FileResponse(file_path) except Exception as e: log.exception(e) detail = None try: if r.status != 200: res = await r.json() if "error" in res: detail = f"External: {res['error'].get('message', '')}" except Exception: detail = f"External: {e}" raise HTTPException( status_code=getattr(r, "status", 500), detail=detail if detail else "Open WebUI: Server Connection Error", ) elif request.app.state.config.TTS_ENGINE == "transformers": payload = None try: payload = json.loads(body.decode("utf-8")) except Exception as e: log.exception(e) raise HTTPException(status_code=400, detail="Invalid JSON payload") import torch import soundfile as sf load_speech_pipeline(request) embeddings_dataset = request.app.state.speech_speaker_embeddings_dataset speaker_index = 6799 try: speaker_index = embeddings_dataset["filename"].index( request.app.state.config.TTS_MODEL ) except Exception: pass speaker_embedding = torch.tensor( embeddings_dataset[speaker_index]["xvector"] ).unsqueeze(0) speech = request.app.state.speech_synthesiser( payload["input"], forward_params={"speaker_embeddings": speaker_embedding}, ) sf.write(file_path, speech["audio"], samplerate=speech["sampling_rate"]) async with aiofiles.open(file_body_path, "w") as f: await f.write(json.dumps(payload)) return FileResponse(file_path) def transcribe(request: Request, file_path): print("transcribe", file_path) filename = os.path.basename(file_path) file_dir = os.path.dirname(file_path) id = filename.split(".")[0] if request.app.state.config.STT_ENGINE == "": if request.app.state.faster_whisper_model is None: request.app.state.faster_whisper_model = set_faster_whisper_model( request.app.state.config.WHISPER_MODEL ) model = request.app.state.faster_whisper_model segments, info = model.transcribe(file_path, beam_size=5) log.info( "Detected language '%s' with probability %f" % (info.language, info.language_probability) ) transcript = "".join([segment.text for segment in list(segments)]) data = {"text": transcript.strip()} # save the transcript to a json file transcript_file = f"{file_dir}/{id}.json" with open(transcript_file, "w") as f: json.dump(data, f) log.debug(data) return data elif request.app.state.config.STT_ENGINE == "openai": if is_mp4_audio(file_path): os.rename(file_path, file_path.replace(".wav", ".mp4")) # Convert MP4 audio file to WAV format convert_mp4_to_wav(file_path.replace(".wav", ".mp4"), file_path) r = None try: r = requests.post( url=f"{request.app.state.config.STT_OPENAI_API_BASE_URL}/audio/transcriptions", headers={ "Authorization": f"Bearer {request.app.state.config.STT_OPENAI_API_KEY}" }, files={"file": (filename, open(file_path, "rb"))}, data={"model": request.app.state.config.STT_MODEL}, ) r.raise_for_status() data = r.json() # save the transcript to a json file transcript_file = f"{file_dir}/{id}.json" with open(transcript_file, "w") as f: json.dump(data, f) return data except Exception as e: log.exception(e) detail = None if r is not None: try: res = r.json() if "error" in res: detail = f"External: {res['error'].get('message', '')}" except Exception: detail = f"External: {e}" raise Exception(detail if detail else "Open WebUI: Server Connection Error") def compress_audio(file_path): if os.path.getsize(file_path) > MAX_FILE_SIZE: file_dir = os.path.dirname(file_path) audio = AudioSegment.from_file(file_path) audio = audio.set_frame_rate(16000).set_channels(1) # Compress audio compressed_path = f"{file_dir}/{id}_compressed.opus" audio.export(compressed_path, format="opus", bitrate="32k") log.debug(f"Compressed audio to {compressed_path}") if ( os.path.getsize(compressed_path) > MAX_FILE_SIZE ): # Still larger than MAX_FILE_SIZE after compression raise Exception(ERROR_MESSAGES.FILE_TOO_LARGE(size=f"{MAX_FILE_SIZE_MB}MB")) return compressed_path else: return file_path @router.post("/transcriptions") def transcription( request: Request, file: UploadFile = File(...), user=Depends(get_verified_user), ): log.info(f"file.content_type: {file.content_type}") if file.content_type not in ["audio/mpeg", "audio/wav", "audio/ogg", "audio/x-m4a"]: raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=ERROR_MESSAGES.FILE_NOT_SUPPORTED, ) try: ext = file.filename.split(".")[-1] id = uuid.uuid4() filename = f"{id}.{ext}" contents = file.file.read() file_dir = f"{CACHE_DIR}/audio/transcriptions" os.makedirs(file_dir, exist_ok=True) file_path = f"{file_dir}/{filename}" with open(file_path, "wb") as f: f.write(contents) try: try: file_path = compress_audio(file_path) except Exception as e: log.exception(e) raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=ERROR_MESSAGES.DEFAULT(e), ) data = transcribe(request, file_path) file_path = file_path.split("/")[-1] return {**data, "filename": file_path} except Exception as e: log.exception(e) raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=ERROR_MESSAGES.DEFAULT(e), ) except Exception as e: log.exception(e) raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=ERROR_MESSAGES.DEFAULT(e), ) def get_available_models(request: Request) -> list[dict]: available_models = [] if request.app.state.config.TTS_ENGINE == "openai": available_models = [{"id": "tts-1"}, {"id": "tts-1-hd"}] elif request.app.state.config.TTS_ENGINE == "elevenlabs": try: response = requests.get( "https://api.elevenlabs.io/v1/models", headers={ "xi-api-key": request.app.state.config.TTS_API_KEY, "Content-Type": "application/json", }, timeout=5, ) response.raise_for_status() models = response.json() available_models = [ {"name": model["name"], "id": model["model_id"]} for model in models ] except requests.RequestException as e: log.error(f"Error fetching voices: {str(e)}") return available_models @router.get("/models") async def get_models(request: Request, user=Depends(get_verified_user)): return {"models": get_available_models(request)} def get_available_voices(request) -> dict: """Returns {voice_id: voice_name} dict""" available_voices = {} if request.app.state.config.TTS_ENGINE == "openai": available_voices = { "alloy": "alloy", "echo": "echo", "fable": "fable", "onyx": "onyx", "nova": "nova", "shimmer": "shimmer", } elif request.app.state.config.TTS_ENGINE == "elevenlabs": try: available_voices = get_elevenlabs_voices( api_key=request.app.state.config.TTS_API_KEY ) except Exception: # Avoided @lru_cache with exception pass elif request.app.state.config.TTS_ENGINE == "azure": try: region = request.app.state.config.TTS_AZURE_SPEECH_REGION url = f"https://{region}.tts.speech.microsoft.com/cognitiveservices/voices/list" headers = { "Ocp-Apim-Subscription-Key": request.app.state.config.TTS_API_KEY } response = requests.get(url, headers=headers) response.raise_for_status() voices = response.json() for voice in voices: available_voices[voice["ShortName"]] = ( f"{voice['DisplayName']} ({voice['ShortName']})" ) except requests.RequestException as e: log.error(f"Error fetching voices: {str(e)}") return available_voices @lru_cache def get_elevenlabs_voices(api_key: str) -> dict: """ Note, set the following in your .env file to use Elevenlabs: AUDIO_TTS_ENGINE=elevenlabs AUDIO_TTS_API_KEY=sk_... # Your Elevenlabs API key AUDIO_TTS_VOICE=EXAVITQu4vr4xnSDxMaL # From https://api.elevenlabs.io/v1/voices AUDIO_TTS_MODEL=eleven_multilingual_v2 """ try: # TODO: Add retries response = requests.get( "https://api.elevenlabs.io/v1/voices", headers={ "xi-api-key": api_key, "Content-Type": "application/json", }, ) response.raise_for_status() voices_data = response.json() voices = {} for voice in voices_data.get("voices", []): voices[voice["voice_id"]] = voice["name"] except requests.RequestException as e: # Avoid @lru_cache with exception log.error(f"Error fetching voices: {str(e)}") raise RuntimeError(f"Error fetching voices: {str(e)}") return voices @router.get("/voices") async def get_voices(request: Request, user=Depends(get_verified_user)): return { "voices": [ {"id": k, "name": v} for k, v in get_available_voices(request).items() ] }