import logging import os import uuid from typing import Optional, Union import asyncio import requests from huggingface_hub import snapshot_download from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever from langchain_community.retrievers import BM25Retriever from langchain_core.documents import Document from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT from open_webui.utils.misc import get_last_user_message from open_webui.env import SRC_LOG_LEVELS log = logging.getLogger(__name__) log.setLevel(SRC_LOG_LEVELS["RAG"]) from typing import Any from langchain_core.callbacks import CallbackManagerForRetrieverRun from langchain_core.retrievers import BaseRetriever class VectorSearchRetriever(BaseRetriever): collection_name: Any embedding_function: Any top_k: int def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, ) -> list[Document]: result = VECTOR_DB_CLIENT.search( collection_name=self.collection_name, vectors=[self.embedding_function(query)], limit=self.top_k, ) ids = result.ids[0] metadatas = result.metadatas[0] documents = result.documents[0] results = [] for idx in range(len(ids)): results.append( Document( metadata=metadatas[idx], page_content=documents[idx], ) ) return results def query_doc( collection_name: str, query_embedding: list[float], k: int, ): try: result = VECTOR_DB_CLIENT.search( collection_name=collection_name, vectors=[query_embedding], limit=k, ) if result: log.info(f"query_doc:result {result.ids} {result.metadatas}") return result except Exception as e: print(e) raise e def query_doc_with_hybrid_search( collection_name: str, query: str, embedding_function, k: int, reranking_function, r: float, ) -> dict: try: result = VECTOR_DB_CLIENT.get(collection_name=collection_name) bm25_retriever = BM25Retriever.from_texts( texts=result.documents[0], metadatas=result.metadatas[0], ) bm25_retriever.k = k vector_search_retriever = VectorSearchRetriever( collection_name=collection_name, embedding_function=embedding_function, top_k=k, ) ensemble_retriever = EnsembleRetriever( retrievers=[bm25_retriever, vector_search_retriever], weights=[0.5, 0.5] ) compressor = RerankCompressor( embedding_function=embedding_function, top_n=k, reranking_function=reranking_function, r_score=r, ) compression_retriever = ContextualCompressionRetriever( base_compressor=compressor, base_retriever=ensemble_retriever ) result = compression_retriever.invoke(query) result = { "distances": [[d.metadata.get("score") for d in result]], "documents": [[d.page_content for d in result]], "metadatas": [[d.metadata for d in result]], } log.info( "query_doc_with_hybrid_search:result " + f'{result["metadatas"]} {result["distances"]}' ) return result except Exception as e: raise e def merge_and_sort_query_results( query_results: list[dict], k: int, reverse: bool = False ) -> list[dict]: # Initialize lists to store combined data combined_distances = [] combined_documents = [] combined_metadatas = [] for data in query_results: combined_distances.extend(data["distances"][0]) combined_documents.extend(data["documents"][0]) combined_metadatas.extend(data["metadatas"][0]) # Create a list of tuples (distance, document, metadata) combined = list(zip(combined_distances, combined_documents, combined_metadatas)) # Sort the list based on distances combined.sort(key=lambda x: x[0], reverse=reverse) # We don't have anything :-( if not combined: sorted_distances = [] sorted_documents = [] sorted_metadatas = [] else: # Unzip the sorted list sorted_distances, sorted_documents, sorted_metadatas = zip(*combined) # Slicing the lists to include only k elements sorted_distances = list(sorted_distances)[:k] sorted_documents = list(sorted_documents)[:k] sorted_metadatas = list(sorted_metadatas)[:k] # Create the output dictionary result = { "distances": [sorted_distances], "documents": [sorted_documents], "metadatas": [sorted_metadatas], } return result def query_collection( collection_names: list[str], queries: list[str], embedding_function, k: int, ) -> dict: results = [] for query in queries: query_embedding = embedding_function(query) for collection_name in collection_names: if collection_name: try: result = query_doc( collection_name=collection_name, k=k, query_embedding=query_embedding, ) if result is not None: results.append(result.model_dump()) except Exception as e: log.exception(f"Error when querying the collection: {e}") else: pass return merge_and_sort_query_results(results, k=k) def query_collection_with_hybrid_search( collection_names: list[str], queries: list[str], embedding_function, k: int, reranking_function, r: float, ) -> dict: results = [] error = False for collection_name in collection_names: try: for query in queries: result = query_doc_with_hybrid_search( collection_name=collection_name, query=query, embedding_function=embedding_function, k=k, reranking_function=reranking_function, r=r, ) results.append(result) except Exception as e: log.exception( "Error when querying the collection with " f"hybrid_search: {e}" ) error = True if error: raise Exception( "Hybrid search failed for all collections. Using Non hybrid search as fallback." ) return merge_and_sort_query_results(results, k=k, reverse=True) def get_embedding_function( embedding_engine, embedding_model, embedding_function, url, key, embedding_batch_size, ): if embedding_engine == "": return lambda query: embedding_function.encode(query).tolist() elif embedding_engine in ["ollama", "openai"]: func = lambda query: generate_embeddings( engine=embedding_engine, model=embedding_model, text=query, url=url, key=key, ) def generate_multiple(query, func): if isinstance(query, list): embeddings = [] for i in range(0, len(query), embedding_batch_size): embeddings.extend(func(query[i : i + embedding_batch_size])) return embeddings else: return func(query) return lambda query: generate_multiple(query, func) def get_sources_from_files( files, queries, embedding_function, k, reranking_function, r, hybrid_search, ): log.debug(f"files: {files} {queries} {embedding_function} {reranking_function}") extracted_collections = [] relevant_contexts = [] for file in files: if file.get("context") == "full": context = { "documents": [[file.get("file").get("data", {}).get("content")]], "metadatas": [[{"file_id": file.get("id"), "name": file.get("name")}]], } else: context = None collection_names = [] if file.get("type") == "collection": if file.get("legacy"): collection_names = file.get("collection_names", []) else: collection_names.append(file["id"]) elif file.get("collection_name"): collection_names.append(file["collection_name"]) elif file.get("id"): if file.get("legacy"): collection_names.append(f"{file['id']}") else: collection_names.append(f"file-{file['id']}") collection_names = set(collection_names).difference(extracted_collections) if not collection_names: log.debug(f"skipping {file} as it has already been extracted") continue try: context = None if file.get("type") == "text": context = file["content"] else: if hybrid_search: try: context = query_collection_with_hybrid_search( collection_names=collection_names, queries=queries, embedding_function=embedding_function, k=k, reranking_function=reranking_function, r=r, ) except Exception as e: log.debug( "Error when using hybrid search, using" " non hybrid search as fallback." ) if (not hybrid_search) or (context is None): context = query_collection( collection_names=collection_names, queries=queries, embedding_function=embedding_function, k=k, ) except Exception as e: log.exception(e) extracted_collections.extend(collection_names) if context: if "data" in file: del file["data"] relevant_contexts.append({**context, "file": file}) sources = [] for context in relevant_contexts: try: if "documents" in context: if "metadatas" in context: source = { "source": context["file"], "document": context["documents"][0], "metadata": context["metadatas"][0], } if "distances" in context and context["distances"]: source["distances"] = context["distances"][0] sources.append(source) except Exception as e: log.exception(e) return sources def get_model_path(model: str, update_model: bool = False): # Construct huggingface_hub kwargs with local_files_only to return the snapshot path cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME") local_files_only = not update_model snapshot_kwargs = { "cache_dir": cache_dir, "local_files_only": local_files_only, } log.debug(f"model: {model}") log.debug(f"snapshot_kwargs: {snapshot_kwargs}") # Inspiration from upstream sentence_transformers if ( os.path.exists(model) or ("\\" in model or model.count("/") > 1) and local_files_only ): # If fully qualified path exists, return input, else set repo_id return model elif "/" not in model: # Set valid repo_id for model short-name model = "sentence-transformers" + "/" + model snapshot_kwargs["repo_id"] = model # Attempt to query the huggingface_hub library to determine the local path and/or to update try: model_repo_path = snapshot_download(**snapshot_kwargs) log.debug(f"model_repo_path: {model_repo_path}") return model_repo_path except Exception as e: log.exception(f"Cannot determine model snapshot path: {e}") return model def generate_openai_batch_embeddings( model: str, texts: list[str], url: str = "https://api.openai.com/v1", key: str = "" ) -> Optional[list[list[float]]]: try: r = requests.post( f"{url}/embeddings", headers={ "Content-Type": "application/json", "Authorization": f"Bearer {key}", }, json={"input": texts, "model": model}, ) r.raise_for_status() data = r.json() if "data" in data: return [elem["embedding"] for elem in data["data"]] else: raise "Something went wrong :/" except Exception as e: print(e) return None def generate_ollama_batch_embeddings( model: str, texts: list[str], url: str, key: str = "" ) -> Optional[list[list[float]]]: try: r = requests.post( f"{url}/api/embed", headers={ "Content-Type": "application/json", "Authorization": f"Bearer {key}", }, json={"input": texts, "model": model}, ) r.raise_for_status() data = r.json() if "embeddings" in data: return data["embeddings"] else: raise "Something went wrong :/" except Exception as e: print(e) return None def generate_embeddings(engine: str, model: str, text: Union[str, list[str]], **kwargs): url = kwargs.get("url", "") key = kwargs.get("key", "") if engine == "ollama": if isinstance(text, list): embeddings = generate_ollama_batch_embeddings( **{"model": model, "texts": text, "url": url, "key": key} ) else: embeddings = generate_ollama_batch_embeddings( **{"model": model, "texts": [text], "url": url, "key": key} ) return embeddings[0] if isinstance(text, str) else embeddings elif engine == "openai": if isinstance(text, list): embeddings = generate_openai_batch_embeddings(model, text, url, key) else: embeddings = generate_openai_batch_embeddings(model, [text], url, key) return embeddings[0] if isinstance(text, str) else embeddings import operator from typing import Optional, Sequence from langchain_core.callbacks import Callbacks from langchain_core.documents import BaseDocumentCompressor, Document class RerankCompressor(BaseDocumentCompressor): embedding_function: Any top_n: int reranking_function: Any r_score: float class Config: extra = "forbid" arbitrary_types_allowed = True def compress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: reranking = self.reranking_function is not None if reranking: scores = self.reranking_function.predict( [(query, doc.page_content) for doc in documents] ) else: from sentence_transformers import util query_embedding = self.embedding_function(query) document_embedding = self.embedding_function( [doc.page_content for doc in documents] ) scores = util.cos_sim(query_embedding, document_embedding)[0] docs_with_scores = list(zip(documents, scores.tolist())) if self.r_score: docs_with_scores = [ (d, s) for d, s in docs_with_scores if s >= self.r_score ] result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True) final_results = [] for doc, doc_score in result[: self.top_n]: metadata = doc.metadata metadata["score"] = doc_score doc = Document( page_content=doc.page_content, metadata=metadata, ) final_results.append(doc) return final_results