diff --git a/backend/open_webui/apps/rag/main.py b/backend/open_webui/apps/rag/main.py index 981a6fe5b..74855b336 100644 --- a/backend/open_webui/apps/rag/main.py +++ b/backend/open_webui/apps/rag/main.py @@ -1099,35 +1099,35 @@ def store_docs_in_vector_db( log.info(f"deleting existing collection {collection_name}") VECTOR_DB_CLIENT.delete_collection(collection_name=collection_name) - embedding_function = get_embedding_function( - app.state.config.RAG_EMBEDDING_ENGINE, - app.state.config.RAG_EMBEDDING_MODEL, - app.state.sentence_transformer_ef, - app.state.config.OPENAI_API_KEY, - app.state.config.OPENAI_API_BASE_URL, - app.state.config.RAG_EMBEDDING_OPENAI_BATCH_SIZE, - ) - - VECTOR_DB_CLIENT.insert( - collection_name=collection_name, - items=[ - { - "id": str(uuid.uuid4()), - "text": text, - "vector": embedding_function(text.replace("\n", " ")), - "metadata": metadatas[idx], - } - for idx, text in enumerate(texts) - ], - ) - - return True - except Exception as e: - if e.__class__.__name__ == "UniqueConstraintError": + if VECTOR_DB_CLIENT.has_collection(collection_name=collection_name): + log.info(f"collection {collection_name} already exists") return True + else: + embedding_function = get_embedding_function( + app.state.config.RAG_EMBEDDING_ENGINE, + app.state.config.RAG_EMBEDDING_MODEL, + app.state.sentence_transformer_ef, + app.state.config.OPENAI_API_KEY, + app.state.config.OPENAI_API_BASE_URL, + app.state.config.RAG_EMBEDDING_OPENAI_BATCH_SIZE, + ) + VECTOR_DB_CLIENT.insert( + collection_name=collection_name, + items=[ + { + "id": str(uuid.uuid4()), + "text": text, + "vector": embedding_function(text.replace("\n", " ")), + "metadata": metadatas[idx], + } + for idx, text in enumerate(texts) + ], + ) + + return True + except Exception as e: log.exception(e) - return False