Merge branch 'open-webui:dev' into dev

This commit is contained in:
smonux 2024-09-28 06:01:26 +02:00 committed by GitHub
commit e039b4ec54
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
50 changed files with 1113 additions and 1091 deletions

View File

@ -170,7 +170,7 @@ docker run --rm --volume /var/run/docker.sock:/var/run/docker.sock containrrr/wa
In the last part of the command, replace `open-webui` with your container name if it is different.
Check our Migration Guide available in our [Open WebUI Documentation](https://docs.openwebui.com/migration/).
Check our Migration Guide available in our [Open WebUI Documentation](https://docs.openwebui.com/tutorials/migration/).
### Using the Dev Branch 🌙

View File

@ -27,7 +27,6 @@ from fastapi.responses import FileResponse, StreamingResponse
from pydantic import BaseModel
from starlette.background import BackgroundTask
from open_webui.utils.payload import (
apply_model_params_to_body_openai,
apply_model_system_prompt_to_body,
@ -47,7 +46,6 @@ app.add_middleware(
allow_headers=["*"],
)
app.state.config = AppConfig()
app.state.config.ENABLE_MODEL_FILTER = ENABLE_MODEL_FILTER
@ -407,20 +405,25 @@ async def generate_chat_completion(
url = app.state.config.OPENAI_API_BASE_URLS[idx]
key = app.state.config.OPENAI_API_KEYS[idx]
is_o1 = payload["model"].lower().startswith("o1-")
# Change max_completion_tokens to max_tokens (Backward compatible)
if "api.openai.com" not in url and not payload["model"].lower().startswith("o1-"):
if "api.openai.com" not in url and not is_o1:
if "max_completion_tokens" in payload:
# Remove "max_completion_tokens" from the payload
payload["max_tokens"] = payload["max_completion_tokens"]
del payload["max_completion_tokens"]
else:
if payload["model"].lower().startswith("o1-") and "max_tokens" in payload:
if is_o1 and "max_tokens" in payload:
payload["max_completion_tokens"] = payload["max_tokens"]
del payload["max_tokens"]
if "max_tokens" in payload and "max_completion_tokens" in payload:
del payload["max_tokens"]
# Fix: O1 does not support the "system" parameter, Modify "system" to "user"
if is_o1 and payload["messages"][0]["role"] == "system":
payload["messages"][0]["role"] = "user"
# Convert the modified body back to JSON
payload = json.dumps(payload)

View File

@ -0,0 +1,190 @@
import requests
import logging
import ftfy
from langchain_community.document_loaders import (
BSHTMLLoader,
CSVLoader,
Docx2txtLoader,
OutlookMessageLoader,
PyPDFLoader,
TextLoader,
UnstructuredEPubLoader,
UnstructuredExcelLoader,
UnstructuredMarkdownLoader,
UnstructuredPowerPointLoader,
UnstructuredRSTLoader,
UnstructuredXMLLoader,
YoutubeLoader,
)
from langchain_core.documents import Document
from open_webui.env import SRC_LOG_LEVELS
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
known_source_ext = [
"go",
"py",
"java",
"sh",
"bat",
"ps1",
"cmd",
"js",
"ts",
"css",
"cpp",
"hpp",
"h",
"c",
"cs",
"sql",
"log",
"ini",
"pl",
"pm",
"r",
"dart",
"dockerfile",
"env",
"php",
"hs",
"hsc",
"lua",
"nginxconf",
"conf",
"m",
"mm",
"plsql",
"perl",
"rb",
"rs",
"db2",
"scala",
"bash",
"swift",
"vue",
"svelte",
"msg",
"ex",
"exs",
"erl",
"tsx",
"jsx",
"hs",
"lhs",
]
class TikaLoader:
def __init__(self, url, file_path, mime_type=None):
self.url = url
self.file_path = file_path
self.mime_type = mime_type
def load(self) -> list[Document]:
with open(self.file_path, "rb") as f:
data = f.read()
if self.mime_type is not None:
headers = {"Content-Type": self.mime_type}
else:
headers = {}
endpoint = self.url
if not endpoint.endswith("/"):
endpoint += "/"
endpoint += "tika/text"
r = requests.put(endpoint, data=data, headers=headers)
if r.ok:
raw_metadata = r.json()
text = raw_metadata.get("X-TIKA:content", "<No text content found>")
if "Content-Type" in raw_metadata:
headers["Content-Type"] = raw_metadata["Content-Type"]
log.info("Tika extracted text: %s", text)
return [Document(page_content=text, metadata=headers)]
else:
raise Exception(f"Error calling Tika: {r.reason}")
class Loader:
def __init__(self, engine: str = "", **kwargs):
self.engine = engine
self.kwargs = kwargs
def load(
self, filename: str, file_content_type: str, file_path: str
) -> list[Document]:
loader = self._get_loader(filename, file_content_type, file_path)
docs = loader.load()
return [
Document(
page_content=ftfy.fix_text(doc.page_content), metadata=doc.metadata
)
for doc in docs
]
def _get_loader(self, filename: str, file_content_type: str, file_path: str):
file_ext = filename.split(".")[-1].lower()
if self.engine == "tika" and self.kwargs.get("TIKA_SERVER_URL"):
if file_ext in known_source_ext or (
file_content_type and file_content_type.find("text/") >= 0
):
loader = TextLoader(file_path, autodetect_encoding=True)
else:
loader = TikaLoader(
url=self.kwargs.get("TIKA_SERVER_URL"),
file_path=file_path,
mime_type=file_content_type,
)
else:
if file_ext == "pdf":
loader = PyPDFLoader(
file_path, extract_images=self.kwargs.get("PDF_EXTRACT_IMAGES")
)
elif file_ext == "csv":
loader = CSVLoader(file_path)
elif file_ext == "rst":
loader = UnstructuredRSTLoader(file_path, mode="elements")
elif file_ext == "xml":
loader = UnstructuredXMLLoader(file_path)
elif file_ext in ["htm", "html"]:
loader = BSHTMLLoader(file_path, open_encoding="unicode_escape")
elif file_ext == "md":
loader = UnstructuredMarkdownLoader(file_path)
elif file_content_type == "application/epub+zip":
loader = UnstructuredEPubLoader(file_path)
elif (
file_content_type
== "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
or file_ext == "docx"
):
loader = Docx2txtLoader(file_path)
elif file_content_type in [
"application/vnd.ms-excel",
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
] or file_ext in ["xls", "xlsx"]:
loader = UnstructuredExcelLoader(file_path)
elif file_content_type in [
"application/vnd.ms-powerpoint",
"application/vnd.openxmlformats-officedocument.presentationml.presentation",
] or file_ext in ["ppt", "pptx"]:
loader = UnstructuredPowerPointLoader(file_path)
elif file_ext == "msg":
loader = OutlookMessageLoader(file_path)
elif file_ext in known_source_ext or (
file_content_type and file_content_type.find("text/") >= 0
):
loader = TextLoader(file_path, autodetect_encoding=True)
else:
loader = TextLoader(file_path, autodetect_encoding=True)
return loader

View File

@ -0,0 +1,81 @@
import os
import torch
import numpy as np
from colbert.infra import ColBERTConfig
from colbert.modeling.checkpoint import Checkpoint
class ColBERT:
def __init__(self, name, **kwargs) -> None:
print("ColBERT: Loading model", name)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
DOCKER = kwargs.get("env") == "docker"
if DOCKER:
# This is a workaround for the issue with the docker container
# where the torch extension is not loaded properly
# and the following error is thrown:
# /root/.cache/torch_extensions/py311_cpu/segmented_maxsim_cpp/segmented_maxsim_cpp.so: cannot open shared object file: No such file or directory
lock_file = (
"/root/.cache/torch_extensions/py311_cpu/segmented_maxsim_cpp/lock"
)
if os.path.exists(lock_file):
os.remove(lock_file)
self.ckpt = Checkpoint(
name,
colbert_config=ColBERTConfig(model_name=name),
).to(self.device)
pass
def calculate_similarity_scores(self, query_embeddings, document_embeddings):
query_embeddings = query_embeddings.to(self.device)
document_embeddings = document_embeddings.to(self.device)
# Validate dimensions to ensure compatibility
if query_embeddings.dim() != 3:
raise ValueError(
f"Expected query embeddings to have 3 dimensions, but got {query_embeddings.dim()}."
)
if document_embeddings.dim() != 3:
raise ValueError(
f"Expected document embeddings to have 3 dimensions, but got {document_embeddings.dim()}."
)
if query_embeddings.size(0) not in [1, document_embeddings.size(0)]:
raise ValueError(
"There should be either one query or queries equal to the number of documents."
)
# Transpose the query embeddings to align for matrix multiplication
transposed_query_embeddings = query_embeddings.permute(0, 2, 1)
# Compute similarity scores using batch matrix multiplication
computed_scores = torch.matmul(document_embeddings, transposed_query_embeddings)
# Apply max pooling to extract the highest semantic similarity across each document's sequence
maximum_scores = torch.max(computed_scores, dim=1).values
# Sum up the maximum scores across features to get the overall document relevance scores
final_scores = maximum_scores.sum(dim=1)
normalized_scores = torch.softmax(final_scores, dim=0)
return normalized_scores.detach().cpu().numpy().astype(np.float32)
def predict(self, sentences):
query = sentences[0][0]
docs = [i[1] for i in sentences]
# Embedding the documents
embedded_docs = self.ckpt.docFromText(docs, bsize=32)[0]
# Embedding the queries
embedded_queries = self.ckpt.queryFromText([query], bsize=32)
embedded_query = embedded_queries[0]
# Calculate retrieval scores for the query against all documents
scores = self.calculate_similarity_scores(
embedded_query.unsqueeze(0), embedded_docs
)
return scores

View File

@ -15,7 +15,7 @@ from open_webui.apps.ollama.main import (
GenerateEmbeddingsForm,
generate_ollama_embeddings,
)
from open_webui.apps.rag.vector.connector import VECTOR_DB_CLIENT
from open_webui.apps.retrieval.vector.connector import VECTOR_DB_CLIENT
from open_webui.utils.misc import get_last_user_message
from open_webui.env import SRC_LOG_LEVELS

View File

@ -1,5 +1,5 @@
from open_webui.apps.rag.vector.dbs.chroma import ChromaClient
from open_webui.apps.rag.vector.dbs.milvus import MilvusClient
from open_webui.apps.retrieval.vector.dbs.chroma import ChromaClient
from open_webui.apps.retrieval.vector.dbs.milvus import MilvusClient
from open_webui.config import VECTOR_DB

View File

@ -4,7 +4,7 @@ from chromadb.utils.batch_utils import create_batches
from typing import Optional
from open_webui.apps.rag.vector.main import VectorItem, SearchResult, GetResult
from open_webui.apps.retrieval.vector.main import VectorItem, SearchResult, GetResult
from open_webui.config import (
CHROMA_DATA_PATH,
CHROMA_HTTP_HOST,

View File

@ -4,7 +4,7 @@ import json
from typing import Optional
from open_webui.apps.rag.vector.main import VectorItem, SearchResult, GetResult
from open_webui.apps.retrieval.vector.main import VectorItem, SearchResult, GetResult
from open_webui.config import (
MILVUS_URI,
)
@ -98,7 +98,10 @@ class MilvusClient:
index_params = self.client.prepare_index_params()
index_params.add_index(
field_name="vector", index_type="HNSW", metric_type="COSINE", params={}
field_name="vector",
index_type="HNSW",
metric_type="COSINE",
params={"M": 16, "efConstruction": 100},
)
self.client.create_collection(

View File

@ -2,7 +2,7 @@ import logging
from typing import Optional
import requests
from open_webui.apps.rag.search.main import SearchResult, get_filtered_results
from open_webui.apps.retrieval.web.main import SearchResult, get_filtered_results
from open_webui.env import SRC_LOG_LEVELS
log = logging.getLogger(__name__)

View File

@ -1,7 +1,7 @@
import logging
from typing import Optional
from open_webui.apps.rag.search.main import SearchResult, get_filtered_results
from open_webui.apps.retrieval.web.main import SearchResult, get_filtered_results
from duckduckgo_search import DDGS
from open_webui.env import SRC_LOG_LEVELS

View File

@ -2,7 +2,7 @@ import logging
from typing import Optional
import requests
from open_webui.apps.rag.search.main import SearchResult, get_filtered_results
from open_webui.apps.retrieval.web.main import SearchResult, get_filtered_results
from open_webui.env import SRC_LOG_LEVELS
log = logging.getLogger(__name__)

View File

@ -1,7 +1,7 @@
import logging
import requests
from open_webui.apps.rag.search.main import SearchResult
from open_webui.apps.retrieval.web.main import SearchResult
from open_webui.env import SRC_LOG_LEVELS
from yarl import URL

View File

@ -3,7 +3,7 @@ from typing import Optional
from urllib.parse import urlencode
import requests
from open_webui.apps.rag.search.main import SearchResult, get_filtered_results
from open_webui.apps.retrieval.web.main import SearchResult, get_filtered_results
from open_webui.env import SRC_LOG_LEVELS
log = logging.getLogger(__name__)

View File

@ -2,7 +2,7 @@ import logging
from typing import Optional
import requests
from open_webui.apps.rag.search.main import SearchResult, get_filtered_results
from open_webui.apps.retrieval.web.main import SearchResult, get_filtered_results
from open_webui.env import SRC_LOG_LEVELS
log = logging.getLogger(__name__)

View File

@ -3,7 +3,7 @@ import logging
from typing import Optional
import requests
from open_webui.apps.rag.search.main import SearchResult, get_filtered_results
from open_webui.apps.retrieval.web.main import SearchResult, get_filtered_results
from open_webui.env import SRC_LOG_LEVELS
log = logging.getLogger(__name__)

View File

@ -3,7 +3,7 @@ from typing import Optional
from urllib.parse import urlencode
import requests
from open_webui.apps.rag.search.main import SearchResult, get_filtered_results
from open_webui.apps.retrieval.web.main import SearchResult, get_filtered_results
from open_webui.env import SRC_LOG_LEVELS
log = logging.getLogger(__name__)

View File

@ -2,7 +2,7 @@ import logging
from typing import Optional
import requests
from open_webui.apps.rag.search.main import SearchResult, get_filtered_results
from open_webui.apps.retrieval.web.main import SearchResult, get_filtered_results
from open_webui.env import SRC_LOG_LEVELS
log = logging.getLogger(__name__)

View File

@ -1,7 +1,7 @@
import logging
import requests
from open_webui.apps.rag.search.main import SearchResult
from open_webui.apps.retrieval.web.main import SearchResult
from open_webui.env import SRC_LOG_LEVELS
log = logging.getLogger(__name__)

View File

@ -0,0 +1,97 @@
import socket
import urllib.parse
import validators
from typing import Union, Sequence, Iterator
from langchain_community.document_loaders import (
WebBaseLoader,
)
from langchain_core.documents import Document
from open_webui.constants import ERROR_MESSAGES
from open_webui.config import ENABLE_RAG_LOCAL_WEB_FETCH
from open_webui.env import SRC_LOG_LEVELS
import logging
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
def validate_url(url: Union[str, Sequence[str]]):
if isinstance(url, str):
if isinstance(validators.url(url), validators.ValidationError):
raise ValueError(ERROR_MESSAGES.INVALID_URL)
if not ENABLE_RAG_LOCAL_WEB_FETCH:
# Local web fetch is disabled, filter out any URLs that resolve to private IP addresses
parsed_url = urllib.parse.urlparse(url)
# Get IPv4 and IPv6 addresses
ipv4_addresses, ipv6_addresses = resolve_hostname(parsed_url.hostname)
# Check if any of the resolved addresses are private
# This is technically still vulnerable to DNS rebinding attacks, as we don't control WebBaseLoader
for ip in ipv4_addresses:
if validators.ipv4(ip, private=True):
raise ValueError(ERROR_MESSAGES.INVALID_URL)
for ip in ipv6_addresses:
if validators.ipv6(ip, private=True):
raise ValueError(ERROR_MESSAGES.INVALID_URL)
return True
elif isinstance(url, Sequence):
return all(validate_url(u) for u in url)
else:
return False
def resolve_hostname(hostname):
# Get address information
addr_info = socket.getaddrinfo(hostname, None)
# Extract IP addresses from address information
ipv4_addresses = [info[4][0] for info in addr_info if info[0] == socket.AF_INET]
ipv6_addresses = [info[4][0] for info in addr_info if info[0] == socket.AF_INET6]
return ipv4_addresses, ipv6_addresses
class SafeWebBaseLoader(WebBaseLoader):
"""WebBaseLoader with enhanced error handling for URLs."""
def lazy_load(self) -> Iterator[Document]:
"""Lazy load text from the url(s) in web_path with error handling."""
for path in self.web_paths:
try:
soup = self._scrape(path, bs_kwargs=self.bs_kwargs)
text = soup.get_text(**self.bs_get_text_kwargs)
# Build metadata
metadata = {"source": path}
if title := soup.find("title"):
metadata["title"] = title.get_text()
if description := soup.find("meta", attrs={"name": "description"}):
metadata["description"] = description.get(
"content", "No description found."
)
if html := soup.find("html"):
metadata["language"] = html.get("lang", "No language found.")
yield Document(page_content=text, metadata=metadata)
except Exception as e:
# Log the error and continue with the next URL
log.error(f"Error loading {path}: {e}")
def get_web_loader(
url: Union[str, Sequence[str]],
verify_ssl: bool = True,
requests_per_second: int = 2,
):
# Check if the URL is valid
if not validate_url(url):
raise ValueError(ERROR_MESSAGES.INVALID_URL)
return SafeWebBaseLoader(
url,
verify_ssl=verify_ssl,
requests_per_second=requests_per_second,
continue_on_failure=True,
)

View File

@ -97,6 +97,17 @@ class FilesTable:
for file in db.query(File).filter_by(user_id=user_id).all()
]
def update_files_metadata_by_id(self, id: str, meta: dict) -> Optional[FileModel]:
with get_db() as db:
try:
file = db.query(File).filter_by(id=id).first()
file.meta = {**file.meta, **meta}
db.commit()
return FileModel.model_validate(file)
except Exception:
return None
def delete_file_by_id(self, id: str) -> bool:
with get_db() as db:
try:

View File

@ -171,6 +171,19 @@ async def get_file_content_by_id(id: str, user=Depends(get_verified_user)):
)
@router.get("/{id}/content/text")
async def get_file_text_content_by_id(id: str, user=Depends(get_verified_user)):
file = Files.get_file_by_id(id)
if file and (file.user_id == user.id or user.role == "admin"):
return {"text": file.meta.get("content", {}).get("text", None)}
else:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=ERROR_MESSAGES.NOT_FOUND,
)
@router.get("/{id}/content/{file_name}", response_model=Optional[FileModel])
async def get_file_content_by_id(id: str, user=Depends(get_verified_user)):
file = Files.get_file_by_id(id)

View File

@ -4,7 +4,7 @@ import logging
from typing import Optional
from open_webui.apps.webui.models.memories import Memories, MemoryModel
from open_webui.apps.rag.vector.connector import VECTOR_DB_CLIENT
from open_webui.apps.retrieval.vector.connector import VECTOR_DB_CLIENT
from open_webui.utils.utils import get_verified_user
from open_webui.env import SRC_LOG_LEVELS

View File

@ -921,7 +921,7 @@ CHROMA_HTTP_SSL = os.environ.get("CHROMA_HTTP_SSL", "false").lower() == "true"
MILVUS_URI = os.environ.get("MILVUS_URI", f"{DATA_DIR}/vector_db/milvus.db")
####################################
# RAG
# Information Retrieval (RAG)
####################################
# RAG Content Extraction

View File

@ -16,37 +16,45 @@ from typing import Optional
import aiohttp
import requests
from open_webui.apps.audio.main import app as audio_app
from open_webui.apps.images.main import app as images_app
from open_webui.apps.ollama.main import app as ollama_app
from open_webui.apps.ollama.main import (
GenerateChatCompletionForm,
app as ollama_app,
get_all_models as get_ollama_models,
generate_chat_completion as generate_ollama_chat_completion,
generate_openai_chat_completion as generate_ollama_openai_chat_completion,
GenerateChatCompletionForm,
)
from open_webui.apps.ollama.main import get_all_models as get_ollama_models
from open_webui.apps.openai.main import app as openai_app
from open_webui.apps.openai.main import (
app as openai_app,
generate_chat_completion as generate_openai_chat_completion,
get_all_models as get_openai_models,
)
from open_webui.apps.openai.main import get_all_models as get_openai_models
from open_webui.apps.rag.main import app as rag_app
from open_webui.apps.rag.utils import get_rag_context, rag_template
from open_webui.apps.socket.main import app as socket_app, periodic_usage_pool_cleanup
from open_webui.apps.socket.main import get_event_call, get_event_emitter
from open_webui.apps.webui.internal.db import Session
from open_webui.apps.webui.main import app as webui_app
from open_webui.apps.retrieval.main import app as retrieval_app
from open_webui.apps.retrieval.utils import get_rag_context, rag_template
from open_webui.apps.socket.main import (
app as socket_app,
periodic_usage_pool_cleanup,
get_event_call,
get_event_emitter,
)
from open_webui.apps.webui.main import (
app as webui_app,
generate_function_chat_completion,
get_pipe_models,
)
from open_webui.apps.webui.internal.db import Session
from open_webui.apps.webui.models.auths import Auths
from open_webui.apps.webui.models.functions import Functions
from open_webui.apps.webui.models.models import Models
from open_webui.apps.webui.models.users import UserModel, Users
from open_webui.apps.webui.utils import load_function_module_by_id
from open_webui.apps.audio.main import app as audio_app
from open_webui.apps.images.main import app as images_app
from authlib.integrations.starlette_client import OAuth
from authlib.oidc.core import UserInfo
@ -492,11 +500,11 @@ async def chat_completion_files_handler(body) -> tuple[dict, dict[str, list]]:
contexts, citations = get_rag_context(
files=files,
messages=body["messages"],
embedding_function=rag_app.state.EMBEDDING_FUNCTION,
k=rag_app.state.config.TOP_K,
reranking_function=rag_app.state.sentence_transformer_rf,
r=rag_app.state.config.RELEVANCE_THRESHOLD,
hybrid_search=rag_app.state.config.ENABLE_RAG_HYBRID_SEARCH,
embedding_function=retrieval_app.state.EMBEDDING_FUNCTION,
k=retrieval_app.state.config.TOP_K,
reranking_function=retrieval_app.state.sentence_transformer_rf,
r=retrieval_app.state.config.RELEVANCE_THRESHOLD,
hybrid_search=retrieval_app.state.config.ENABLE_RAG_HYBRID_SEARCH,
)
log.debug(f"rag_contexts: {contexts}, citations: {citations}")
@ -609,7 +617,7 @@ class ChatCompletionMiddleware(BaseHTTPMiddleware):
if prompt is None:
raise Exception("No user message found")
if (
rag_app.state.config.RELEVANCE_THRESHOLD == 0
retrieval_app.state.config.RELEVANCE_THRESHOLD == 0
and context_string.strip() == ""
):
log.debug(
@ -621,14 +629,14 @@ class ChatCompletionMiddleware(BaseHTTPMiddleware):
if model["owned_by"] == "ollama":
body["messages"] = prepend_to_first_user_message_content(
rag_template(
rag_app.state.config.RAG_TEMPLATE, context_string, prompt
retrieval_app.state.config.RAG_TEMPLATE, context_string, prompt
),
body["messages"],
)
else:
body["messages"] = add_or_update_system_message(
rag_template(
rag_app.state.config.RAG_TEMPLATE, context_string, prompt
retrieval_app.state.config.RAG_TEMPLATE, context_string, prompt
),
body["messages"],
)
@ -762,10 +770,22 @@ class PipelineMiddleware(BaseHTTPMiddleware):
# Parse string to JSON
data = json.loads(body_str) if body_str else {}
user = get_current_user(
request,
get_http_authorization_cred(request.headers["Authorization"]),
)
try:
user = get_current_user(
request,
get_http_authorization_cred(request.headers["Authorization"]),
)
except KeyError as e:
if len(e.args) > 1:
return JSONResponse(
status_code=e.args[0],
content={"detail": e.args[1]},
)
else:
return JSONResponse(
status_code=status.HTTP_401_UNAUTHORIZED,
content={"detail": "Not authenticated"},
)
try:
data = filter_pipeline(data, user)
@ -838,7 +858,7 @@ async def check_url(request: Request, call_next):
async def update_embedding_function(request: Request, call_next):
response = await call_next(request)
if "/embedding/update" in request.url.path:
webui_app.state.EMBEDDING_FUNCTION = rag_app.state.EMBEDDING_FUNCTION
webui_app.state.EMBEDDING_FUNCTION = retrieval_app.state.EMBEDDING_FUNCTION
return response
@ -866,11 +886,12 @@ app.mount("/openai", openai_app)
app.mount("/images/api/v1", images_app)
app.mount("/audio/api/v1", audio_app)
app.mount("/rag/api/v1", rag_app)
app.mount("/retrieval/api/v1", retrieval_app)
app.mount("/api/v1", webui_app)
webui_app.state.EMBEDDING_FUNCTION = rag_app.state.EMBEDDING_FUNCTION
webui_app.state.EMBEDDING_FUNCTION = retrieval_app.state.EMBEDDING_FUNCTION
async def get_all_models():
@ -2055,7 +2076,7 @@ async def get_app_config(request: Request):
"enable_login_form": webui_app.state.config.ENABLE_LOGIN_FORM,
**(
{
"enable_web_search": rag_app.state.config.ENABLE_RAG_WEB_SEARCH,
"enable_web_search": retrieval_app.state.config.ENABLE_RAG_WEB_SEARCH,
"enable_image_generation": images_app.state.config.ENABLED,
"enable_community_sharing": webui_app.state.config.ENABLE_COMMUNITY_SHARING,
"enable_message_rating": webui_app.state.config.ENABLE_MESSAGE_RATING,
@ -2081,8 +2102,8 @@ async def get_app_config(request: Request):
},
},
"file": {
"max_size": rag_app.state.config.FILE_MAX_SIZE,
"max_count": rag_app.state.config.FILE_MAX_COUNT,
"max_size": retrieval_app.state.config.FILE_MAX_SIZE,
"max_count": retrieval_app.state.config.FILE_MAX_COUNT,
},
"permissions": {**webui_app.state.config.USER_PERMISSIONS},
}
@ -2154,7 +2175,8 @@ async def get_app_changelog():
@app.get("/api/version/updates")
async def get_app_latest_release_version():
try:
async with aiohttp.ClientSession(trust_env=True) as session:
timeout = aiohttp.ClientTimeout(total=1)
async with aiohttp.ClientSession(timeout=timeout, trust_env=True) as session:
async with session.get(
"https://api.github.com/repos/open-webui/open-webui/releases/latest"
) as response:
@ -2164,10 +2186,7 @@ async def get_app_latest_release_version():
return {"current": VERSION, "latest": latest_version[1:]}
except aiohttp.ClientError:
raise HTTPException(
status_code=status.HTTP_503_SERVICE_UNAVAILABLE,
detail=ERROR_MESSAGES.RATE_LIMIT_EXCEEDED,
)
return {"current": VERSION, "latest": VERSION}
############################

View File

@ -46,6 +46,8 @@ sentence-transformers==3.0.1
colbert-ai==0.2.21
einops==0.8.0
ftfy==6.2.3
pypdf==4.3.1
docx2txt==0.8
python-pptx==1.0.0

View File

@ -53,6 +53,8 @@ dependencies = [
"colbert-ai==0.2.21",
"einops==0.8.0",
"ftfy==6.2.3",
"pypdf==4.3.1",
"docx2txt==0.8",
"python-pptx==1.0.0",

View File

@ -170,284 +170,6 @@ export const updateQuerySettings = async (token: string, settings: QuerySettings
return res;
};
export const processDocToVectorDB = async (token: string, file_id: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/process/doc`, {
method: 'POST',
headers: {
Accept: 'application/json',
'Content-Type': 'application/json',
authorization: `Bearer ${token}`
},
body: JSON.stringify({
file_id: file_id
})
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
console.log(err);
return null;
});
if (error) {
throw error;
}
return res;
};
export const uploadDocToVectorDB = async (token: string, collection_name: string, file: File) => {
const data = new FormData();
data.append('file', file);
data.append('collection_name', collection_name);
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/doc`, {
method: 'POST',
headers: {
Accept: 'application/json',
authorization: `Bearer ${token}`
},
body: data
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
console.log(err);
return null;
});
if (error) {
throw error;
}
return res;
};
export const uploadWebToVectorDB = async (token: string, collection_name: string, url: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/web`, {
method: 'POST',
headers: {
Accept: 'application/json',
'Content-Type': 'application/json',
authorization: `Bearer ${token}`
},
body: JSON.stringify({
url: url,
collection_name: collection_name
})
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
console.log(err);
return null;
});
if (error) {
throw error;
}
return res;
};
export const uploadYoutubeTranscriptionToVectorDB = async (token: string, url: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/youtube`, {
method: 'POST',
headers: {
Accept: 'application/json',
'Content-Type': 'application/json',
authorization: `Bearer ${token}`
},
body: JSON.stringify({
url: url
})
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
console.log(err);
return null;
});
if (error) {
throw error;
}
return res;
};
export const queryDoc = async (
token: string,
collection_name: string,
query: string,
k: number | null = null
) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/query/doc`, {
method: 'POST',
headers: {
Accept: 'application/json',
'Content-Type': 'application/json',
authorization: `Bearer ${token}`
},
body: JSON.stringify({
collection_name: collection_name,
query: query,
k: k
})
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
return null;
});
if (error) {
throw error;
}
return res;
};
export const queryCollection = async (
token: string,
collection_names: string,
query: string,
k: number | null = null
) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/query/collection`, {
method: 'POST',
headers: {
Accept: 'application/json',
'Content-Type': 'application/json',
authorization: `Bearer ${token}`
},
body: JSON.stringify({
collection_names: collection_names,
query: query,
k: k
})
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
return null;
});
if (error) {
throw error;
}
return res;
};
export const scanDocs = async (token: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/scan`, {
method: 'GET',
headers: {
Accept: 'application/json',
authorization: `Bearer ${token}`
}
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
return null;
});
if (error) {
throw error;
}
return res;
};
export const resetUploadDir = async (token: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/reset/uploads`, {
method: 'POST',
headers: {
Accept: 'application/json',
authorization: `Bearer ${token}`
}
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
return null;
});
if (error) {
throw error;
}
return res;
};
export const resetVectorDB = async (token: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/reset/db`, {
method: 'POST',
headers: {
Accept: 'application/json',
authorization: `Bearer ${token}`
}
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
return null;
});
if (error) {
throw error;
}
return res;
};
export const getEmbeddingConfig = async (token: string) => {
let error = null;
@ -578,14 +300,140 @@ export const updateRerankingConfig = async (token: string, payload: RerankingMod
return res;
};
export const runWebSearch = async (
export interface SearchDocument {
status: boolean;
collection_name: string;
filenames: string[];
}
export const processFile = async (token: string, file_id: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/process/file`, {
method: 'POST',
headers: {
Accept: 'application/json',
'Content-Type': 'application/json',
authorization: `Bearer ${token}`
},
body: JSON.stringify({
file_id: file_id
})
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
console.log(err);
return null;
});
if (error) {
throw error;
}
return res;
};
export const processDocsDir = async (token: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/process/dir`, {
method: 'GET',
headers: {
Accept: 'application/json',
authorization: `Bearer ${token}`
}
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
return null;
});
if (error) {
throw error;
}
return res;
};
export const processYoutubeVideo = async (token: string, url: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/process/youtube`, {
method: 'POST',
headers: {
Accept: 'application/json',
'Content-Type': 'application/json',
authorization: `Bearer ${token}`
},
body: JSON.stringify({
url: url
})
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
console.log(err);
return null;
});
if (error) {
throw error;
}
return res;
};
export const processWeb = async (token: string, collection_name: string, url: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/process/web`, {
method: 'POST',
headers: {
Accept: 'application/json',
'Content-Type': 'application/json',
authorization: `Bearer ${token}`
},
body: JSON.stringify({
url: url,
collection_name: collection_name
})
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
console.log(err);
return null;
});
if (error) {
throw error;
}
return res;
};
export const processWebSearch = async (
token: string,
query: string,
collection_name?: string
): Promise<SearchDocument | null> => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/web/search`, {
const res = await fetch(`${RAG_API_BASE_URL}/process/web/search`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
@ -613,8 +461,128 @@ export const runWebSearch = async (
return res;
};
export interface SearchDocument {
status: boolean;
collection_name: string;
filenames: string[];
}
export const queryDoc = async (
token: string,
collection_name: string,
query: string,
k: number | null = null
) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/query/doc`, {
method: 'POST',
headers: {
Accept: 'application/json',
'Content-Type': 'application/json',
authorization: `Bearer ${token}`
},
body: JSON.stringify({
collection_name: collection_name,
query: query,
k: k
})
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
return null;
});
if (error) {
throw error;
}
return res;
};
export const queryCollection = async (
token: string,
collection_names: string,
query: string,
k: number | null = null
) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/query/collection`, {
method: 'POST',
headers: {
Accept: 'application/json',
'Content-Type': 'application/json',
authorization: `Bearer ${token}`
},
body: JSON.stringify({
collection_names: collection_names,
query: query,
k: k
})
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
return null;
});
if (error) {
throw error;
}
return res;
};
export const resetUploadDir = async (token: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/reset/uploads`, {
method: 'POST',
headers: {
Accept: 'application/json',
authorization: `Bearer ${token}`
}
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
return null;
});
if (error) {
throw error;
}
return res;
};
export const resetVectorDB = async (token: string) => {
let error = null;
const res = await fetch(`${RAG_API_BASE_URL}/reset/db`, {
method: 'POST',
headers: {
Accept: 'application/json',
authorization: `Bearer ${token}`
}
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
return null;
});
if (error) {
throw error;
}
return res;
};

View File

@ -7,7 +7,7 @@
import { deleteAllFiles, deleteFileById } from '$lib/apis/files';
import {
getQuerySettings,
scanDocs,
processDocsDir,
updateQuerySettings,
resetVectorDB,
getEmbeddingConfig,
@ -17,7 +17,7 @@
resetUploadDir,
getRAGConfig,
updateRAGConfig
} from '$lib/apis/rag';
} from '$lib/apis/retrieval';
import ResetUploadDirConfirmDialog from '$lib/components/common/ConfirmDialog.svelte';
import ResetVectorDBConfirmDialog from '$lib/components/common/ConfirmDialog.svelte';
@ -63,7 +63,7 @@
const scanHandler = async () => {
scanDirLoading = true;
const res = await scanDocs(localStorage.token);
const res = await processDocsDir(localStorage.token);
scanDirLoading = false;
if (res) {

View File

@ -1,5 +1,5 @@
<script lang="ts">
import { getRAGConfig, updateRAGConfig } from '$lib/apis/rag';
import { getRAGConfig, updateRAGConfig } from '$lib/apis/retrieval';
import Switch from '$lib/components/common/Switch.svelte';
import { documents, models } from '$lib/stores';

View File

@ -52,7 +52,7 @@
updateChatById
} from '$lib/apis/chats';
import { generateOpenAIChatCompletion } from '$lib/apis/openai';
import { runWebSearch } from '$lib/apis/rag';
import { processWebSearch } from '$lib/apis/retrieval';
import { createOpenAITextStream } from '$lib/apis/streaming';
import { queryMemory } from '$lib/apis/memories';
import { getAndUpdateUserLocation, getUserSettings } from '$lib/apis/users';
@ -1737,7 +1737,7 @@
});
history.messages[responseMessageId] = responseMessage;
const results = await runWebSearch(localStorage.token, searchQuery).catch((error) => {
const results = await processWebSearch(localStorage.token, searchQuery).catch((error) => {
console.log(error);
toast.error(error);

View File

@ -46,6 +46,9 @@
chatFiles.splice(fileIdx, 1);
chatFiles = chatFiles;
}}
on:click={() => {
console.log(file);
}}
/>
{/each}
</div>

View File

@ -17,7 +17,8 @@
import { blobToFile, findWordIndices } from '$lib/utils';
import { transcribeAudio } from '$lib/apis/audio';
import { processDocToVectorDB } from '$lib/apis/rag';
import { processFile } from '$lib/apis/retrieval';
import { uploadFile } from '$lib/apis/files';
import {
@ -158,17 +159,14 @@
const processFileItem = async (fileItem) => {
try {
const res = await processDocToVectorDB(localStorage.token, fileItem.id);
const res = await processFile(localStorage.token, fileItem.id);
if (res) {
fileItem.status = 'processed';
fileItem.collection_name = res.collection_name;
files = files;
}
} catch (e) {
// Remove the failed doc from the files array
// files = files.filter((f) => f.id !== fileItem.id);
toast.error(e);
// We keep the file in the files list even if it fails to process
fileItem.status = 'processed';
files = files;
}

View File

@ -9,7 +9,7 @@
import Models from './Commands/Models.svelte';
import { removeLastWordFromString } from '$lib/utils';
import { uploadWebToVectorDB, uploadYoutubeTranscriptionToVectorDB } from '$lib/apis/rag';
import { processWeb, processYoutubeVideo } from '$lib/apis/retrieval';
export let prompt = '';
export let files = [];
@ -41,7 +41,7 @@
try {
files = [...files, doc];
const res = await uploadWebToVectorDB(localStorage.token, '', url);
const res = await processWeb(localStorage.token, '', url);
if (res) {
doc.status = 'processed';
@ -69,7 +69,7 @@
try {
files = [...files, doc];
const res = await uploadYoutubeTranscriptionToVectorDB(localStorage.token, url);
const res = await processYoutubeVideo(localStorage.token, url);
if (res) {
doc.status = 'processed';

View File

@ -8,8 +8,6 @@
export let colorClassName = 'bg-white dark:bg-gray-800';
export let url: string | null = null;
export let clickHandler: Function | null = null;
export let dismissible = false;
export let status = 'processed';
@ -17,7 +15,7 @@
export let type: string;
export let size: number;
function formatSize(size) {
const formatSize = (size) => {
if (size == null) return 'Unknown size';
if (typeof size !== 'number' || size < 0) return 'Invalid size';
if (size === 0) return '0 B';
@ -29,7 +27,7 @@
unitIndex++;
}
return `${size.toFixed(1)} ${units[unitIndex]}`;
}
};
</script>
<div class="relative group">
@ -37,17 +35,7 @@
class="h-14 {className} flex items-center space-x-3 {colorClassName} rounded-xl border border-gray-100 dark:border-gray-800 text-left"
type="button"
on:click={async () => {
if (clickHandler === null) {
if (url) {
if (type === 'file') {
window.open(`${url}/content`, '_blank').focus();
} else {
window.open(`${url}`, '_blank').focus();
}
}
} else {
clickHandler();
}
dispatch('click');
}}
>
<div class="p-4 py-[1.1rem] bg-red-400 text-white rounded-l-xl">

View File

@ -3,16 +3,13 @@
import dayjs from 'dayjs';
import { onMount, getContext } from 'svelte';
import { createNewDoc, getDocs, tagDocByName, updateDocByName } from '$lib/apis/documents';
import { getDocs } from '$lib/apis/documents';
import Modal from '../common/Modal.svelte';
import { documents } from '$lib/stores';
import TagInput from '../common/Tags/TagInput.svelte';
import Tags from '../common/Tags.svelte';
import { addTagById } from '$lib/apis/chats';
import { uploadDocToVectorDB } from '$lib/apis/rag';
import { transformFileName } from '$lib/utils';
import { SUPPORTED_FILE_EXTENSIONS, SUPPORTED_FILE_TYPE } from '$lib/constants';
import Tags from '../common/Tags.svelte';
const i18n = getContext('i18n');
export let show = false;

View File

@ -8,7 +8,7 @@
import { createNewDoc, deleteDocByName, getDocs } from '$lib/apis/documents';
import { SUPPORTED_FILE_TYPE, SUPPORTED_FILE_EXTENSIONS } from '$lib/constants';
import { processDocToVectorDB, uploadDocToVectorDB } from '$lib/apis/rag';
import { processFile } from '$lib/apis/retrieval';
import { blobToFile, transformFileName } from '$lib/utils';
import Checkbox from '$lib/components/common/Checkbox.svelte';
@ -74,7 +74,7 @@
return null;
});
const res = await processDocToVectorDB(localStorage.token, uploadedFile.id).catch((error) => {
const res = await processFile(localStorage.token, uploadedFile.id).catch((error) => {
toast.error(error);
return null;
});

View File

@ -11,7 +11,7 @@ export const OLLAMA_API_BASE_URL = `${WEBUI_BASE_URL}/ollama`;
export const OPENAI_API_BASE_URL = `${WEBUI_BASE_URL}/openai`;
export const AUDIO_API_BASE_URL = `${WEBUI_BASE_URL}/audio/api/v1`;
export const IMAGES_API_BASE_URL = `${WEBUI_BASE_URL}/images/api/v1`;
export const RAG_API_BASE_URL = `${WEBUI_BASE_URL}/rag/api/v1`;
export const RAG_API_BASE_URL = `${WEBUI_BASE_URL}/retrieval/api/v1`;
export const WEBUI_VERSION = APP_VERSION;
export const WEBUI_BUILD_HASH = APP_BUILD_HASH;

View File

@ -9,7 +9,7 @@
"{{user}}'s Chats": "Els xats de {{user}}",
"{{webUIName}} Backend Required": "El Backend de {{webUIName}} és necessari",
"*Prompt node ID(s) are required for image generation": "*Els identificadors de nodes d'indicacions són necessaris per a la generació d'imatges",
"A new version (v{{LATEST_VERSION}}) is now available.": "",
"A new version (v{{LATEST_VERSION}}) is now available.": "Hi ha una nova versió disponible (v{{LATEST_VERSION}}).",
"A task model is used when performing tasks such as generating titles for chats and web search queries": "Un model de tasca s'utilitza quan es realitzen tasques com ara generar títols per a xats i consultes de cerca per a la web",
"a user": "un usuari",
"About": "Sobre",
@ -466,7 +466,7 @@
"Oops! Looks like the URL is invalid. Please double-check and try again.": "Ui! Sembla que l'URL no és vàlida. Si us plau, revisa-la i torna-ho a provar.",
"Oops! There was an error in the previous response. Please try again or contact admin.": "Ui! Hi ha hagut un error en la resposta anterior. Torna a provar-ho o contacta amb un administrador",
"Oops! You're using an unsupported method (frontend only). Please serve the WebUI from the backend.": "Ui! Estàs utilitzant un mètode no suportat (només frontend). Si us plau, serveix la WebUI des del backend.",
"Open file": "",
"Open file": "Obrir arxiu",
"Open new chat": "Obre un xat nou",
"Open WebUI version (v{{OPEN_WEBUI_VERSION}}) is lower than required version (v{{REQUIRED_VERSION}})": "La versió d'Open WebUI (v{{OPEN_WEBUI_VERSION}}) és inferior a la versió requerida (v{{REQUIRED_VERSION}})",
"OpenAI": "OpenAI",
@ -478,7 +478,7 @@
"Other": "Altres",
"Output format": "Format de sortida",
"Overview": "Vista general",
"page": "",
"page": "pàgina",
"Password": "Contrasenya",
"PDF document (.pdf)": "Document PDF (.pdf)",
"PDF Extract Images (OCR)": "Extreu imatges del PDF (OCR)",
@ -497,7 +497,7 @@
"Plain text (.txt)": "Text pla (.txt)",
"Playground": "Zona de jocs",
"Please carefully review the following warnings:": "Si us plau, revisa els següents avisos amb cura:",
"Please select a reason": "",
"Please select a reason": "Si us plau, selecciona una raó",
"Positive attitude": "Actitud positiva",
"Previous 30 days": "30 dies anteriors",
"Previous 7 days": "7 dies anteriors",
@ -704,7 +704,7 @@
"Unpin": "Alliberar",
"Update": "Actualitzar",
"Update and Copy Link": "Actualitzar i copiar l'enllaç",
"Update for the latest features and improvements.": "",
"Update for the latest features and improvements.": "Actualitza per a les darreres característiques i millores.",
"Update password": "Actualitzar la contrasenya",
"Updated at": "Actualitzat",
"Upload": "Pujar",

View File

@ -1,4 +1,4 @@
import { getRAGTemplate } from '$lib/apis/rag';
import { getRAGTemplate } from '$lib/apis/retrieval';
export const RAGTemplate = async (token: string, context: string, query: string) => {
let template = await getRAGTemplate(token).catch(() => {

View File

@ -206,10 +206,10 @@
const now = new Date();
if (now - dismissedUpdateToast > 24 * 60 * 60 * 1000) {
await checkForVersionUpdates();
checkForVersionUpdates();
}
} else {
await checkForVersionUpdates();
checkForVersionUpdates();
}
}
await tick();