mirror of
https://github.com/open-webui/open-webui
synced 2025-03-23 22:31:38 +00:00
Merge branch 'open-webui:dev' into dev
This commit is contained in:
commit
e039b4ec54
README.mdpyproject.tomlconstants.ts
backend
open_webui
requirements.txtsrc
lib
apis/retrieval
components
admin/Settings
chat
common
documents
workspace
i18n/locales/ca-ES
utils/rag
routes/(app)
@ -170,7 +170,7 @@ docker run --rm --volume /var/run/docker.sock:/var/run/docker.sock containrrr/wa
|
||||
|
||||
In the last part of the command, replace `open-webui` with your container name if it is different.
|
||||
|
||||
Check our Migration Guide available in our [Open WebUI Documentation](https://docs.openwebui.com/migration/).
|
||||
Check our Migration Guide available in our [Open WebUI Documentation](https://docs.openwebui.com/tutorials/migration/).
|
||||
|
||||
### Using the Dev Branch 🌙
|
||||
|
||||
|
@ -27,7 +27,6 @@ from fastapi.responses import FileResponse, StreamingResponse
|
||||
from pydantic import BaseModel
|
||||
from starlette.background import BackgroundTask
|
||||
|
||||
|
||||
from open_webui.utils.payload import (
|
||||
apply_model_params_to_body_openai,
|
||||
apply_model_system_prompt_to_body,
|
||||
@ -47,7 +46,6 @@ app.add_middleware(
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
|
||||
app.state.config = AppConfig()
|
||||
|
||||
app.state.config.ENABLE_MODEL_FILTER = ENABLE_MODEL_FILTER
|
||||
@ -407,20 +405,25 @@ async def generate_chat_completion(
|
||||
|
||||
url = app.state.config.OPENAI_API_BASE_URLS[idx]
|
||||
key = app.state.config.OPENAI_API_KEYS[idx]
|
||||
is_o1 = payload["model"].lower().startswith("o1-")
|
||||
|
||||
# Change max_completion_tokens to max_tokens (Backward compatible)
|
||||
if "api.openai.com" not in url and not payload["model"].lower().startswith("o1-"):
|
||||
if "api.openai.com" not in url and not is_o1:
|
||||
if "max_completion_tokens" in payload:
|
||||
# Remove "max_completion_tokens" from the payload
|
||||
payload["max_tokens"] = payload["max_completion_tokens"]
|
||||
del payload["max_completion_tokens"]
|
||||
else:
|
||||
if payload["model"].lower().startswith("o1-") and "max_tokens" in payload:
|
||||
if is_o1 and "max_tokens" in payload:
|
||||
payload["max_completion_tokens"] = payload["max_tokens"]
|
||||
del payload["max_tokens"]
|
||||
if "max_tokens" in payload and "max_completion_tokens" in payload:
|
||||
del payload["max_tokens"]
|
||||
|
||||
# Fix: O1 does not support the "system" parameter, Modify "system" to "user"
|
||||
if is_o1 and payload["messages"][0]["role"] == "system":
|
||||
payload["messages"][0]["role"] = "user"
|
||||
|
||||
# Convert the modified body back to JSON
|
||||
payload = json.dumps(payload)
|
||||
|
||||
|
190
backend/open_webui/apps/retrieval/loader/main.py
Normal file
190
backend/open_webui/apps/retrieval/loader/main.py
Normal file
@ -0,0 +1,190 @@
|
||||
import requests
|
||||
import logging
|
||||
import ftfy
|
||||
|
||||
from langchain_community.document_loaders import (
|
||||
BSHTMLLoader,
|
||||
CSVLoader,
|
||||
Docx2txtLoader,
|
||||
OutlookMessageLoader,
|
||||
PyPDFLoader,
|
||||
TextLoader,
|
||||
UnstructuredEPubLoader,
|
||||
UnstructuredExcelLoader,
|
||||
UnstructuredMarkdownLoader,
|
||||
UnstructuredPowerPointLoader,
|
||||
UnstructuredRSTLoader,
|
||||
UnstructuredXMLLoader,
|
||||
YoutubeLoader,
|
||||
)
|
||||
from langchain_core.documents import Document
|
||||
from open_webui.env import SRC_LOG_LEVELS
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
log.setLevel(SRC_LOG_LEVELS["RAG"])
|
||||
|
||||
known_source_ext = [
|
||||
"go",
|
||||
"py",
|
||||
"java",
|
||||
"sh",
|
||||
"bat",
|
||||
"ps1",
|
||||
"cmd",
|
||||
"js",
|
||||
"ts",
|
||||
"css",
|
||||
"cpp",
|
||||
"hpp",
|
||||
"h",
|
||||
"c",
|
||||
"cs",
|
||||
"sql",
|
||||
"log",
|
||||
"ini",
|
||||
"pl",
|
||||
"pm",
|
||||
"r",
|
||||
"dart",
|
||||
"dockerfile",
|
||||
"env",
|
||||
"php",
|
||||
"hs",
|
||||
"hsc",
|
||||
"lua",
|
||||
"nginxconf",
|
||||
"conf",
|
||||
"m",
|
||||
"mm",
|
||||
"plsql",
|
||||
"perl",
|
||||
"rb",
|
||||
"rs",
|
||||
"db2",
|
||||
"scala",
|
||||
"bash",
|
||||
"swift",
|
||||
"vue",
|
||||
"svelte",
|
||||
"msg",
|
||||
"ex",
|
||||
"exs",
|
||||
"erl",
|
||||
"tsx",
|
||||
"jsx",
|
||||
"hs",
|
||||
"lhs",
|
||||
]
|
||||
|
||||
|
||||
class TikaLoader:
|
||||
def __init__(self, url, file_path, mime_type=None):
|
||||
self.url = url
|
||||
self.file_path = file_path
|
||||
self.mime_type = mime_type
|
||||
|
||||
def load(self) -> list[Document]:
|
||||
with open(self.file_path, "rb") as f:
|
||||
data = f.read()
|
||||
|
||||
if self.mime_type is not None:
|
||||
headers = {"Content-Type": self.mime_type}
|
||||
else:
|
||||
headers = {}
|
||||
|
||||
endpoint = self.url
|
||||
if not endpoint.endswith("/"):
|
||||
endpoint += "/"
|
||||
endpoint += "tika/text"
|
||||
|
||||
r = requests.put(endpoint, data=data, headers=headers)
|
||||
|
||||
if r.ok:
|
||||
raw_metadata = r.json()
|
||||
text = raw_metadata.get("X-TIKA:content", "<No text content found>")
|
||||
|
||||
if "Content-Type" in raw_metadata:
|
||||
headers["Content-Type"] = raw_metadata["Content-Type"]
|
||||
|
||||
log.info("Tika extracted text: %s", text)
|
||||
|
||||
return [Document(page_content=text, metadata=headers)]
|
||||
else:
|
||||
raise Exception(f"Error calling Tika: {r.reason}")
|
||||
|
||||
|
||||
class Loader:
|
||||
def __init__(self, engine: str = "", **kwargs):
|
||||
self.engine = engine
|
||||
self.kwargs = kwargs
|
||||
|
||||
def load(
|
||||
self, filename: str, file_content_type: str, file_path: str
|
||||
) -> list[Document]:
|
||||
loader = self._get_loader(filename, file_content_type, file_path)
|
||||
docs = loader.load()
|
||||
|
||||
return [
|
||||
Document(
|
||||
page_content=ftfy.fix_text(doc.page_content), metadata=doc.metadata
|
||||
)
|
||||
for doc in docs
|
||||
]
|
||||
|
||||
def _get_loader(self, filename: str, file_content_type: str, file_path: str):
|
||||
file_ext = filename.split(".")[-1].lower()
|
||||
|
||||
if self.engine == "tika" and self.kwargs.get("TIKA_SERVER_URL"):
|
||||
if file_ext in known_source_ext or (
|
||||
file_content_type and file_content_type.find("text/") >= 0
|
||||
):
|
||||
loader = TextLoader(file_path, autodetect_encoding=True)
|
||||
else:
|
||||
loader = TikaLoader(
|
||||
url=self.kwargs.get("TIKA_SERVER_URL"),
|
||||
file_path=file_path,
|
||||
mime_type=file_content_type,
|
||||
)
|
||||
else:
|
||||
if file_ext == "pdf":
|
||||
loader = PyPDFLoader(
|
||||
file_path, extract_images=self.kwargs.get("PDF_EXTRACT_IMAGES")
|
||||
)
|
||||
elif file_ext == "csv":
|
||||
loader = CSVLoader(file_path)
|
||||
elif file_ext == "rst":
|
||||
loader = UnstructuredRSTLoader(file_path, mode="elements")
|
||||
elif file_ext == "xml":
|
||||
loader = UnstructuredXMLLoader(file_path)
|
||||
elif file_ext in ["htm", "html"]:
|
||||
loader = BSHTMLLoader(file_path, open_encoding="unicode_escape")
|
||||
elif file_ext == "md":
|
||||
loader = UnstructuredMarkdownLoader(file_path)
|
||||
elif file_content_type == "application/epub+zip":
|
||||
loader = UnstructuredEPubLoader(file_path)
|
||||
elif (
|
||||
file_content_type
|
||||
== "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
|
||||
or file_ext == "docx"
|
||||
):
|
||||
loader = Docx2txtLoader(file_path)
|
||||
elif file_content_type in [
|
||||
"application/vnd.ms-excel",
|
||||
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
||||
] or file_ext in ["xls", "xlsx"]:
|
||||
loader = UnstructuredExcelLoader(file_path)
|
||||
elif file_content_type in [
|
||||
"application/vnd.ms-powerpoint",
|
||||
"application/vnd.openxmlformats-officedocument.presentationml.presentation",
|
||||
] or file_ext in ["ppt", "pptx"]:
|
||||
loader = UnstructuredPowerPointLoader(file_path)
|
||||
elif file_ext == "msg":
|
||||
loader = OutlookMessageLoader(file_path)
|
||||
elif file_ext in known_source_ext or (
|
||||
file_content_type and file_content_type.find("text/") >= 0
|
||||
):
|
||||
loader = TextLoader(file_path, autodetect_encoding=True)
|
||||
else:
|
||||
loader = TextLoader(file_path, autodetect_encoding=True)
|
||||
|
||||
return loader
|
File diff suppressed because it is too large
Load Diff
81
backend/open_webui/apps/retrieval/model/colbert.py
Normal file
81
backend/open_webui/apps/retrieval/model/colbert.py
Normal file
@ -0,0 +1,81 @@
|
||||
import os
|
||||
import torch
|
||||
import numpy as np
|
||||
from colbert.infra import ColBERTConfig
|
||||
from colbert.modeling.checkpoint import Checkpoint
|
||||
|
||||
|
||||
class ColBERT:
|
||||
def __init__(self, name, **kwargs) -> None:
|
||||
print("ColBERT: Loading model", name)
|
||||
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
DOCKER = kwargs.get("env") == "docker"
|
||||
if DOCKER:
|
||||
# This is a workaround for the issue with the docker container
|
||||
# where the torch extension is not loaded properly
|
||||
# and the following error is thrown:
|
||||
# /root/.cache/torch_extensions/py311_cpu/segmented_maxsim_cpp/segmented_maxsim_cpp.so: cannot open shared object file: No such file or directory
|
||||
|
||||
lock_file = (
|
||||
"/root/.cache/torch_extensions/py311_cpu/segmented_maxsim_cpp/lock"
|
||||
)
|
||||
if os.path.exists(lock_file):
|
||||
os.remove(lock_file)
|
||||
|
||||
self.ckpt = Checkpoint(
|
||||
name,
|
||||
colbert_config=ColBERTConfig(model_name=name),
|
||||
).to(self.device)
|
||||
pass
|
||||
|
||||
def calculate_similarity_scores(self, query_embeddings, document_embeddings):
|
||||
|
||||
query_embeddings = query_embeddings.to(self.device)
|
||||
document_embeddings = document_embeddings.to(self.device)
|
||||
|
||||
# Validate dimensions to ensure compatibility
|
||||
if query_embeddings.dim() != 3:
|
||||
raise ValueError(
|
||||
f"Expected query embeddings to have 3 dimensions, but got {query_embeddings.dim()}."
|
||||
)
|
||||
if document_embeddings.dim() != 3:
|
||||
raise ValueError(
|
||||
f"Expected document embeddings to have 3 dimensions, but got {document_embeddings.dim()}."
|
||||
)
|
||||
if query_embeddings.size(0) not in [1, document_embeddings.size(0)]:
|
||||
raise ValueError(
|
||||
"There should be either one query or queries equal to the number of documents."
|
||||
)
|
||||
|
||||
# Transpose the query embeddings to align for matrix multiplication
|
||||
transposed_query_embeddings = query_embeddings.permute(0, 2, 1)
|
||||
# Compute similarity scores using batch matrix multiplication
|
||||
computed_scores = torch.matmul(document_embeddings, transposed_query_embeddings)
|
||||
# Apply max pooling to extract the highest semantic similarity across each document's sequence
|
||||
maximum_scores = torch.max(computed_scores, dim=1).values
|
||||
|
||||
# Sum up the maximum scores across features to get the overall document relevance scores
|
||||
final_scores = maximum_scores.sum(dim=1)
|
||||
|
||||
normalized_scores = torch.softmax(final_scores, dim=0)
|
||||
|
||||
return normalized_scores.detach().cpu().numpy().astype(np.float32)
|
||||
|
||||
def predict(self, sentences):
|
||||
|
||||
query = sentences[0][0]
|
||||
docs = [i[1] for i in sentences]
|
||||
|
||||
# Embedding the documents
|
||||
embedded_docs = self.ckpt.docFromText(docs, bsize=32)[0]
|
||||
# Embedding the queries
|
||||
embedded_queries = self.ckpt.queryFromText([query], bsize=32)
|
||||
embedded_query = embedded_queries[0]
|
||||
|
||||
# Calculate retrieval scores for the query against all documents
|
||||
scores = self.calculate_similarity_scores(
|
||||
embedded_query.unsqueeze(0), embedded_docs
|
||||
)
|
||||
|
||||
return scores
|
@ -15,7 +15,7 @@ from open_webui.apps.ollama.main import (
|
||||
GenerateEmbeddingsForm,
|
||||
generate_ollama_embeddings,
|
||||
)
|
||||
from open_webui.apps.rag.vector.connector import VECTOR_DB_CLIENT
|
||||
from open_webui.apps.retrieval.vector.connector import VECTOR_DB_CLIENT
|
||||
from open_webui.utils.misc import get_last_user_message
|
||||
|
||||
from open_webui.env import SRC_LOG_LEVELS
|
@ -1,5 +1,5 @@
|
||||
from open_webui.apps.rag.vector.dbs.chroma import ChromaClient
|
||||
from open_webui.apps.rag.vector.dbs.milvus import MilvusClient
|
||||
from open_webui.apps.retrieval.vector.dbs.chroma import ChromaClient
|
||||
from open_webui.apps.retrieval.vector.dbs.milvus import MilvusClient
|
||||
|
||||
|
||||
from open_webui.config import VECTOR_DB
|
@ -4,7 +4,7 @@ from chromadb.utils.batch_utils import create_batches
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from open_webui.apps.rag.vector.main import VectorItem, SearchResult, GetResult
|
||||
from open_webui.apps.retrieval.vector.main import VectorItem, SearchResult, GetResult
|
||||
from open_webui.config import (
|
||||
CHROMA_DATA_PATH,
|
||||
CHROMA_HTTP_HOST,
|
@ -4,7 +4,7 @@ import json
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from open_webui.apps.rag.vector.main import VectorItem, SearchResult, GetResult
|
||||
from open_webui.apps.retrieval.vector.main import VectorItem, SearchResult, GetResult
|
||||
from open_webui.config import (
|
||||
MILVUS_URI,
|
||||
)
|
||||
@ -98,7 +98,10 @@ class MilvusClient:
|
||||
|
||||
index_params = self.client.prepare_index_params()
|
||||
index_params.add_index(
|
||||
field_name="vector", index_type="HNSW", metric_type="COSINE", params={}
|
||||
field_name="vector",
|
||||
index_type="HNSW",
|
||||
metric_type="COSINE",
|
||||
params={"M": 16, "efConstruction": 100},
|
||||
)
|
||||
|
||||
self.client.create_collection(
|
@ -2,7 +2,7 @@ import logging
|
||||
from typing import Optional
|
||||
|
||||
import requests
|
||||
from open_webui.apps.rag.search.main import SearchResult, get_filtered_results
|
||||
from open_webui.apps.retrieval.web.main import SearchResult, get_filtered_results
|
||||
from open_webui.env import SRC_LOG_LEVELS
|
||||
|
||||
log = logging.getLogger(__name__)
|
@ -1,7 +1,7 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
from open_webui.apps.rag.search.main import SearchResult, get_filtered_results
|
||||
from open_webui.apps.retrieval.web.main import SearchResult, get_filtered_results
|
||||
from duckduckgo_search import DDGS
|
||||
from open_webui.env import SRC_LOG_LEVELS
|
||||
|
@ -2,7 +2,7 @@ import logging
|
||||
from typing import Optional
|
||||
|
||||
import requests
|
||||
from open_webui.apps.rag.search.main import SearchResult, get_filtered_results
|
||||
from open_webui.apps.retrieval.web.main import SearchResult, get_filtered_results
|
||||
from open_webui.env import SRC_LOG_LEVELS
|
||||
|
||||
log = logging.getLogger(__name__)
|
@ -1,7 +1,7 @@
|
||||
import logging
|
||||
|
||||
import requests
|
||||
from open_webui.apps.rag.search.main import SearchResult
|
||||
from open_webui.apps.retrieval.web.main import SearchResult
|
||||
from open_webui.env import SRC_LOG_LEVELS
|
||||
from yarl import URL
|
||||
|
@ -3,7 +3,7 @@ from typing import Optional
|
||||
from urllib.parse import urlencode
|
||||
|
||||
import requests
|
||||
from open_webui.apps.rag.search.main import SearchResult, get_filtered_results
|
||||
from open_webui.apps.retrieval.web.main import SearchResult, get_filtered_results
|
||||
from open_webui.env import SRC_LOG_LEVELS
|
||||
|
||||
log = logging.getLogger(__name__)
|
@ -2,7 +2,7 @@ import logging
|
||||
from typing import Optional
|
||||
|
||||
import requests
|
||||
from open_webui.apps.rag.search.main import SearchResult, get_filtered_results
|
||||
from open_webui.apps.retrieval.web.main import SearchResult, get_filtered_results
|
||||
from open_webui.env import SRC_LOG_LEVELS
|
||||
|
||||
log = logging.getLogger(__name__)
|
@ -3,7 +3,7 @@ import logging
|
||||
from typing import Optional
|
||||
|
||||
import requests
|
||||
from open_webui.apps.rag.search.main import SearchResult, get_filtered_results
|
||||
from open_webui.apps.retrieval.web.main import SearchResult, get_filtered_results
|
||||
from open_webui.env import SRC_LOG_LEVELS
|
||||
|
||||
log = logging.getLogger(__name__)
|
@ -3,7 +3,7 @@ from typing import Optional
|
||||
from urllib.parse import urlencode
|
||||
|
||||
import requests
|
||||
from open_webui.apps.rag.search.main import SearchResult, get_filtered_results
|
||||
from open_webui.apps.retrieval.web.main import SearchResult, get_filtered_results
|
||||
from open_webui.env import SRC_LOG_LEVELS
|
||||
|
||||
log = logging.getLogger(__name__)
|
@ -2,7 +2,7 @@ import logging
|
||||
from typing import Optional
|
||||
|
||||
import requests
|
||||
from open_webui.apps.rag.search.main import SearchResult, get_filtered_results
|
||||
from open_webui.apps.retrieval.web.main import SearchResult, get_filtered_results
|
||||
from open_webui.env import SRC_LOG_LEVELS
|
||||
|
||||
log = logging.getLogger(__name__)
|
@ -1,7 +1,7 @@
|
||||
import logging
|
||||
|
||||
import requests
|
||||
from open_webui.apps.rag.search.main import SearchResult
|
||||
from open_webui.apps.retrieval.web.main import SearchResult
|
||||
from open_webui.env import SRC_LOG_LEVELS
|
||||
|
||||
log = logging.getLogger(__name__)
|
97
backend/open_webui/apps/retrieval/web/utils.py
Normal file
97
backend/open_webui/apps/retrieval/web/utils.py
Normal file
@ -0,0 +1,97 @@
|
||||
import socket
|
||||
import urllib.parse
|
||||
import validators
|
||||
from typing import Union, Sequence, Iterator
|
||||
|
||||
from langchain_community.document_loaders import (
|
||||
WebBaseLoader,
|
||||
)
|
||||
from langchain_core.documents import Document
|
||||
|
||||
|
||||
from open_webui.constants import ERROR_MESSAGES
|
||||
from open_webui.config import ENABLE_RAG_LOCAL_WEB_FETCH
|
||||
from open_webui.env import SRC_LOG_LEVELS
|
||||
|
||||
import logging
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
log.setLevel(SRC_LOG_LEVELS["RAG"])
|
||||
|
||||
|
||||
def validate_url(url: Union[str, Sequence[str]]):
|
||||
if isinstance(url, str):
|
||||
if isinstance(validators.url(url), validators.ValidationError):
|
||||
raise ValueError(ERROR_MESSAGES.INVALID_URL)
|
||||
if not ENABLE_RAG_LOCAL_WEB_FETCH:
|
||||
# Local web fetch is disabled, filter out any URLs that resolve to private IP addresses
|
||||
parsed_url = urllib.parse.urlparse(url)
|
||||
# Get IPv4 and IPv6 addresses
|
||||
ipv4_addresses, ipv6_addresses = resolve_hostname(parsed_url.hostname)
|
||||
# Check if any of the resolved addresses are private
|
||||
# This is technically still vulnerable to DNS rebinding attacks, as we don't control WebBaseLoader
|
||||
for ip in ipv4_addresses:
|
||||
if validators.ipv4(ip, private=True):
|
||||
raise ValueError(ERROR_MESSAGES.INVALID_URL)
|
||||
for ip in ipv6_addresses:
|
||||
if validators.ipv6(ip, private=True):
|
||||
raise ValueError(ERROR_MESSAGES.INVALID_URL)
|
||||
return True
|
||||
elif isinstance(url, Sequence):
|
||||
return all(validate_url(u) for u in url)
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
def resolve_hostname(hostname):
|
||||
# Get address information
|
||||
addr_info = socket.getaddrinfo(hostname, None)
|
||||
|
||||
# Extract IP addresses from address information
|
||||
ipv4_addresses = [info[4][0] for info in addr_info if info[0] == socket.AF_INET]
|
||||
ipv6_addresses = [info[4][0] for info in addr_info if info[0] == socket.AF_INET6]
|
||||
|
||||
return ipv4_addresses, ipv6_addresses
|
||||
|
||||
|
||||
class SafeWebBaseLoader(WebBaseLoader):
|
||||
"""WebBaseLoader with enhanced error handling for URLs."""
|
||||
|
||||
def lazy_load(self) -> Iterator[Document]:
|
||||
"""Lazy load text from the url(s) in web_path with error handling."""
|
||||
for path in self.web_paths:
|
||||
try:
|
||||
soup = self._scrape(path, bs_kwargs=self.bs_kwargs)
|
||||
text = soup.get_text(**self.bs_get_text_kwargs)
|
||||
|
||||
# Build metadata
|
||||
metadata = {"source": path}
|
||||
if title := soup.find("title"):
|
||||
metadata["title"] = title.get_text()
|
||||
if description := soup.find("meta", attrs={"name": "description"}):
|
||||
metadata["description"] = description.get(
|
||||
"content", "No description found."
|
||||
)
|
||||
if html := soup.find("html"):
|
||||
metadata["language"] = html.get("lang", "No language found.")
|
||||
|
||||
yield Document(page_content=text, metadata=metadata)
|
||||
except Exception as e:
|
||||
# Log the error and continue with the next URL
|
||||
log.error(f"Error loading {path}: {e}")
|
||||
|
||||
|
||||
def get_web_loader(
|
||||
url: Union[str, Sequence[str]],
|
||||
verify_ssl: bool = True,
|
||||
requests_per_second: int = 2,
|
||||
):
|
||||
# Check if the URL is valid
|
||||
if not validate_url(url):
|
||||
raise ValueError(ERROR_MESSAGES.INVALID_URL)
|
||||
return SafeWebBaseLoader(
|
||||
url,
|
||||
verify_ssl=verify_ssl,
|
||||
requests_per_second=requests_per_second,
|
||||
continue_on_failure=True,
|
||||
)
|
@ -97,6 +97,17 @@ class FilesTable:
|
||||
for file in db.query(File).filter_by(user_id=user_id).all()
|
||||
]
|
||||
|
||||
def update_files_metadata_by_id(self, id: str, meta: dict) -> Optional[FileModel]:
|
||||
with get_db() as db:
|
||||
try:
|
||||
file = db.query(File).filter_by(id=id).first()
|
||||
file.meta = {**file.meta, **meta}
|
||||
db.commit()
|
||||
|
||||
return FileModel.model_validate(file)
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
def delete_file_by_id(self, id: str) -> bool:
|
||||
with get_db() as db:
|
||||
try:
|
||||
|
@ -171,6 +171,19 @@ async def get_file_content_by_id(id: str, user=Depends(get_verified_user)):
|
||||
)
|
||||
|
||||
|
||||
@router.get("/{id}/content/text")
|
||||
async def get_file_text_content_by_id(id: str, user=Depends(get_verified_user)):
|
||||
file = Files.get_file_by_id(id)
|
||||
|
||||
if file and (file.user_id == user.id or user.role == "admin"):
|
||||
return {"text": file.meta.get("content", {}).get("text", None)}
|
||||
else:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_404_NOT_FOUND,
|
||||
detail=ERROR_MESSAGES.NOT_FOUND,
|
||||
)
|
||||
|
||||
|
||||
@router.get("/{id}/content/{file_name}", response_model=Optional[FileModel])
|
||||
async def get_file_content_by_id(id: str, user=Depends(get_verified_user)):
|
||||
file = Files.get_file_by_id(id)
|
||||
|
@ -4,7 +4,7 @@ import logging
|
||||
from typing import Optional
|
||||
|
||||
from open_webui.apps.webui.models.memories import Memories, MemoryModel
|
||||
from open_webui.apps.rag.vector.connector import VECTOR_DB_CLIENT
|
||||
from open_webui.apps.retrieval.vector.connector import VECTOR_DB_CLIENT
|
||||
from open_webui.utils.utils import get_verified_user
|
||||
from open_webui.env import SRC_LOG_LEVELS
|
||||
|
||||
|
@ -921,7 +921,7 @@ CHROMA_HTTP_SSL = os.environ.get("CHROMA_HTTP_SSL", "false").lower() == "true"
|
||||
MILVUS_URI = os.environ.get("MILVUS_URI", f"{DATA_DIR}/vector_db/milvus.db")
|
||||
|
||||
####################################
|
||||
# RAG
|
||||
# Information Retrieval (RAG)
|
||||
####################################
|
||||
|
||||
# RAG Content Extraction
|
||||
|
@ -16,37 +16,45 @@ from typing import Optional
|
||||
import aiohttp
|
||||
import requests
|
||||
|
||||
|
||||
from open_webui.apps.audio.main import app as audio_app
|
||||
from open_webui.apps.images.main import app as images_app
|
||||
from open_webui.apps.ollama.main import app as ollama_app
|
||||
from open_webui.apps.ollama.main import (
|
||||
GenerateChatCompletionForm,
|
||||
app as ollama_app,
|
||||
get_all_models as get_ollama_models,
|
||||
generate_chat_completion as generate_ollama_chat_completion,
|
||||
generate_openai_chat_completion as generate_ollama_openai_chat_completion,
|
||||
GenerateChatCompletionForm,
|
||||
)
|
||||
from open_webui.apps.ollama.main import get_all_models as get_ollama_models
|
||||
from open_webui.apps.openai.main import app as openai_app
|
||||
from open_webui.apps.openai.main import (
|
||||
app as openai_app,
|
||||
generate_chat_completion as generate_openai_chat_completion,
|
||||
get_all_models as get_openai_models,
|
||||
)
|
||||
from open_webui.apps.openai.main import get_all_models as get_openai_models
|
||||
from open_webui.apps.rag.main import app as rag_app
|
||||
from open_webui.apps.rag.utils import get_rag_context, rag_template
|
||||
from open_webui.apps.socket.main import app as socket_app, periodic_usage_pool_cleanup
|
||||
from open_webui.apps.socket.main import get_event_call, get_event_emitter
|
||||
from open_webui.apps.webui.internal.db import Session
|
||||
from open_webui.apps.webui.main import app as webui_app
|
||||
|
||||
from open_webui.apps.retrieval.main import app as retrieval_app
|
||||
from open_webui.apps.retrieval.utils import get_rag_context, rag_template
|
||||
|
||||
from open_webui.apps.socket.main import (
|
||||
app as socket_app,
|
||||
periodic_usage_pool_cleanup,
|
||||
get_event_call,
|
||||
get_event_emitter,
|
||||
)
|
||||
|
||||
from open_webui.apps.webui.main import (
|
||||
app as webui_app,
|
||||
generate_function_chat_completion,
|
||||
get_pipe_models,
|
||||
)
|
||||
from open_webui.apps.webui.internal.db import Session
|
||||
|
||||
from open_webui.apps.webui.models.auths import Auths
|
||||
from open_webui.apps.webui.models.functions import Functions
|
||||
from open_webui.apps.webui.models.models import Models
|
||||
from open_webui.apps.webui.models.users import UserModel, Users
|
||||
|
||||
from open_webui.apps.webui.utils import load_function_module_by_id
|
||||
|
||||
from open_webui.apps.audio.main import app as audio_app
|
||||
from open_webui.apps.images.main import app as images_app
|
||||
|
||||
from authlib.integrations.starlette_client import OAuth
|
||||
from authlib.oidc.core import UserInfo
|
||||
@ -492,11 +500,11 @@ async def chat_completion_files_handler(body) -> tuple[dict, dict[str, list]]:
|
||||
contexts, citations = get_rag_context(
|
||||
files=files,
|
||||
messages=body["messages"],
|
||||
embedding_function=rag_app.state.EMBEDDING_FUNCTION,
|
||||
k=rag_app.state.config.TOP_K,
|
||||
reranking_function=rag_app.state.sentence_transformer_rf,
|
||||
r=rag_app.state.config.RELEVANCE_THRESHOLD,
|
||||
hybrid_search=rag_app.state.config.ENABLE_RAG_HYBRID_SEARCH,
|
||||
embedding_function=retrieval_app.state.EMBEDDING_FUNCTION,
|
||||
k=retrieval_app.state.config.TOP_K,
|
||||
reranking_function=retrieval_app.state.sentence_transformer_rf,
|
||||
r=retrieval_app.state.config.RELEVANCE_THRESHOLD,
|
||||
hybrid_search=retrieval_app.state.config.ENABLE_RAG_HYBRID_SEARCH,
|
||||
)
|
||||
|
||||
log.debug(f"rag_contexts: {contexts}, citations: {citations}")
|
||||
@ -609,7 +617,7 @@ class ChatCompletionMiddleware(BaseHTTPMiddleware):
|
||||
if prompt is None:
|
||||
raise Exception("No user message found")
|
||||
if (
|
||||
rag_app.state.config.RELEVANCE_THRESHOLD == 0
|
||||
retrieval_app.state.config.RELEVANCE_THRESHOLD == 0
|
||||
and context_string.strip() == ""
|
||||
):
|
||||
log.debug(
|
||||
@ -621,14 +629,14 @@ class ChatCompletionMiddleware(BaseHTTPMiddleware):
|
||||
if model["owned_by"] == "ollama":
|
||||
body["messages"] = prepend_to_first_user_message_content(
|
||||
rag_template(
|
||||
rag_app.state.config.RAG_TEMPLATE, context_string, prompt
|
||||
retrieval_app.state.config.RAG_TEMPLATE, context_string, prompt
|
||||
),
|
||||
body["messages"],
|
||||
)
|
||||
else:
|
||||
body["messages"] = add_or_update_system_message(
|
||||
rag_template(
|
||||
rag_app.state.config.RAG_TEMPLATE, context_string, prompt
|
||||
retrieval_app.state.config.RAG_TEMPLATE, context_string, prompt
|
||||
),
|
||||
body["messages"],
|
||||
)
|
||||
@ -762,10 +770,22 @@ class PipelineMiddleware(BaseHTTPMiddleware):
|
||||
# Parse string to JSON
|
||||
data = json.loads(body_str) if body_str else {}
|
||||
|
||||
user = get_current_user(
|
||||
request,
|
||||
get_http_authorization_cred(request.headers["Authorization"]),
|
||||
)
|
||||
try:
|
||||
user = get_current_user(
|
||||
request,
|
||||
get_http_authorization_cred(request.headers["Authorization"]),
|
||||
)
|
||||
except KeyError as e:
|
||||
if len(e.args) > 1:
|
||||
return JSONResponse(
|
||||
status_code=e.args[0],
|
||||
content={"detail": e.args[1]},
|
||||
)
|
||||
else:
|
||||
return JSONResponse(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
content={"detail": "Not authenticated"},
|
||||
)
|
||||
|
||||
try:
|
||||
data = filter_pipeline(data, user)
|
||||
@ -838,7 +858,7 @@ async def check_url(request: Request, call_next):
|
||||
async def update_embedding_function(request: Request, call_next):
|
||||
response = await call_next(request)
|
||||
if "/embedding/update" in request.url.path:
|
||||
webui_app.state.EMBEDDING_FUNCTION = rag_app.state.EMBEDDING_FUNCTION
|
||||
webui_app.state.EMBEDDING_FUNCTION = retrieval_app.state.EMBEDDING_FUNCTION
|
||||
return response
|
||||
|
||||
|
||||
@ -866,11 +886,12 @@ app.mount("/openai", openai_app)
|
||||
|
||||
app.mount("/images/api/v1", images_app)
|
||||
app.mount("/audio/api/v1", audio_app)
|
||||
app.mount("/rag/api/v1", rag_app)
|
||||
app.mount("/retrieval/api/v1", retrieval_app)
|
||||
|
||||
app.mount("/api/v1", webui_app)
|
||||
|
||||
webui_app.state.EMBEDDING_FUNCTION = rag_app.state.EMBEDDING_FUNCTION
|
||||
|
||||
webui_app.state.EMBEDDING_FUNCTION = retrieval_app.state.EMBEDDING_FUNCTION
|
||||
|
||||
|
||||
async def get_all_models():
|
||||
@ -2055,7 +2076,7 @@ async def get_app_config(request: Request):
|
||||
"enable_login_form": webui_app.state.config.ENABLE_LOGIN_FORM,
|
||||
**(
|
||||
{
|
||||
"enable_web_search": rag_app.state.config.ENABLE_RAG_WEB_SEARCH,
|
||||
"enable_web_search": retrieval_app.state.config.ENABLE_RAG_WEB_SEARCH,
|
||||
"enable_image_generation": images_app.state.config.ENABLED,
|
||||
"enable_community_sharing": webui_app.state.config.ENABLE_COMMUNITY_SHARING,
|
||||
"enable_message_rating": webui_app.state.config.ENABLE_MESSAGE_RATING,
|
||||
@ -2081,8 +2102,8 @@ async def get_app_config(request: Request):
|
||||
},
|
||||
},
|
||||
"file": {
|
||||
"max_size": rag_app.state.config.FILE_MAX_SIZE,
|
||||
"max_count": rag_app.state.config.FILE_MAX_COUNT,
|
||||
"max_size": retrieval_app.state.config.FILE_MAX_SIZE,
|
||||
"max_count": retrieval_app.state.config.FILE_MAX_COUNT,
|
||||
},
|
||||
"permissions": {**webui_app.state.config.USER_PERMISSIONS},
|
||||
}
|
||||
@ -2154,7 +2175,8 @@ async def get_app_changelog():
|
||||
@app.get("/api/version/updates")
|
||||
async def get_app_latest_release_version():
|
||||
try:
|
||||
async with aiohttp.ClientSession(trust_env=True) as session:
|
||||
timeout = aiohttp.ClientTimeout(total=1)
|
||||
async with aiohttp.ClientSession(timeout=timeout, trust_env=True) as session:
|
||||
async with session.get(
|
||||
"https://api.github.com/repos/open-webui/open-webui/releases/latest"
|
||||
) as response:
|
||||
@ -2164,10 +2186,7 @@ async def get_app_latest_release_version():
|
||||
|
||||
return {"current": VERSION, "latest": latest_version[1:]}
|
||||
except aiohttp.ClientError:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_503_SERVICE_UNAVAILABLE,
|
||||
detail=ERROR_MESSAGES.RATE_LIMIT_EXCEEDED,
|
||||
)
|
||||
return {"current": VERSION, "latest": VERSION}
|
||||
|
||||
|
||||
############################
|
||||
|
@ -46,6 +46,8 @@ sentence-transformers==3.0.1
|
||||
colbert-ai==0.2.21
|
||||
einops==0.8.0
|
||||
|
||||
|
||||
ftfy==6.2.3
|
||||
pypdf==4.3.1
|
||||
docx2txt==0.8
|
||||
python-pptx==1.0.0
|
||||
|
@ -53,6 +53,8 @@ dependencies = [
|
||||
"colbert-ai==0.2.21",
|
||||
"einops==0.8.0",
|
||||
|
||||
|
||||
"ftfy==6.2.3",
|
||||
"pypdf==4.3.1",
|
||||
"docx2txt==0.8",
|
||||
"python-pptx==1.0.0",
|
||||
|
@ -170,284 +170,6 @@ export const updateQuerySettings = async (token: string, settings: QuerySettings
|
||||
return res;
|
||||
};
|
||||
|
||||
export const processDocToVectorDB = async (token: string, file_id: string) => {
|
||||
let error = null;
|
||||
|
||||
const res = await fetch(`${RAG_API_BASE_URL}/process/doc`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
Accept: 'application/json',
|
||||
'Content-Type': 'application/json',
|
||||
authorization: `Bearer ${token}`
|
||||
},
|
||||
body: JSON.stringify({
|
||||
file_id: file_id
|
||||
})
|
||||
})
|
||||
.then(async (res) => {
|
||||
if (!res.ok) throw await res.json();
|
||||
return res.json();
|
||||
})
|
||||
.catch((err) => {
|
||||
error = err.detail;
|
||||
console.log(err);
|
||||
return null;
|
||||
});
|
||||
|
||||
if (error) {
|
||||
throw error;
|
||||
}
|
||||
|
||||
return res;
|
||||
};
|
||||
|
||||
export const uploadDocToVectorDB = async (token: string, collection_name: string, file: File) => {
|
||||
const data = new FormData();
|
||||
data.append('file', file);
|
||||
data.append('collection_name', collection_name);
|
||||
|
||||
let error = null;
|
||||
|
||||
const res = await fetch(`${RAG_API_BASE_URL}/doc`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
Accept: 'application/json',
|
||||
authorization: `Bearer ${token}`
|
||||
},
|
||||
body: data
|
||||
})
|
||||
.then(async (res) => {
|
||||
if (!res.ok) throw await res.json();
|
||||
return res.json();
|
||||
})
|
||||
.catch((err) => {
|
||||
error = err.detail;
|
||||
console.log(err);
|
||||
return null;
|
||||
});
|
||||
|
||||
if (error) {
|
||||
throw error;
|
||||
}
|
||||
|
||||
return res;
|
||||
};
|
||||
|
||||
export const uploadWebToVectorDB = async (token: string, collection_name: string, url: string) => {
|
||||
let error = null;
|
||||
|
||||
const res = await fetch(`${RAG_API_BASE_URL}/web`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
Accept: 'application/json',
|
||||
'Content-Type': 'application/json',
|
||||
authorization: `Bearer ${token}`
|
||||
},
|
||||
body: JSON.stringify({
|
||||
url: url,
|
||||
collection_name: collection_name
|
||||
})
|
||||
})
|
||||
.then(async (res) => {
|
||||
if (!res.ok) throw await res.json();
|
||||
return res.json();
|
||||
})
|
||||
.catch((err) => {
|
||||
error = err.detail;
|
||||
console.log(err);
|
||||
return null;
|
||||
});
|
||||
|
||||
if (error) {
|
||||
throw error;
|
||||
}
|
||||
|
||||
return res;
|
||||
};
|
||||
|
||||
export const uploadYoutubeTranscriptionToVectorDB = async (token: string, url: string) => {
|
||||
let error = null;
|
||||
|
||||
const res = await fetch(`${RAG_API_BASE_URL}/youtube`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
Accept: 'application/json',
|
||||
'Content-Type': 'application/json',
|
||||
authorization: `Bearer ${token}`
|
||||
},
|
||||
body: JSON.stringify({
|
||||
url: url
|
||||
})
|
||||
})
|
||||
.then(async (res) => {
|
||||
if (!res.ok) throw await res.json();
|
||||
return res.json();
|
||||
})
|
||||
.catch((err) => {
|
||||
error = err.detail;
|
||||
console.log(err);
|
||||
return null;
|
||||
});
|
||||
|
||||
if (error) {
|
||||
throw error;
|
||||
}
|
||||
|
||||
return res;
|
||||
};
|
||||
|
||||
export const queryDoc = async (
|
||||
token: string,
|
||||
collection_name: string,
|
||||
query: string,
|
||||
k: number | null = null
|
||||
) => {
|
||||
let error = null;
|
||||
|
||||
const res = await fetch(`${RAG_API_BASE_URL}/query/doc`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
Accept: 'application/json',
|
||||
'Content-Type': 'application/json',
|
||||
authorization: `Bearer ${token}`
|
||||
},
|
||||
body: JSON.stringify({
|
||||
collection_name: collection_name,
|
||||
query: query,
|
||||
k: k
|
||||
})
|
||||
})
|
||||
.then(async (res) => {
|
||||
if (!res.ok) throw await res.json();
|
||||
return res.json();
|
||||
})
|
||||
.catch((err) => {
|
||||
error = err.detail;
|
||||
return null;
|
||||
});
|
||||
|
||||
if (error) {
|
||||
throw error;
|
||||
}
|
||||
|
||||
return res;
|
||||
};
|
||||
|
||||
export const queryCollection = async (
|
||||
token: string,
|
||||
collection_names: string,
|
||||
query: string,
|
||||
k: number | null = null
|
||||
) => {
|
||||
let error = null;
|
||||
|
||||
const res = await fetch(`${RAG_API_BASE_URL}/query/collection`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
Accept: 'application/json',
|
||||
'Content-Type': 'application/json',
|
||||
authorization: `Bearer ${token}`
|
||||
},
|
||||
body: JSON.stringify({
|
||||
collection_names: collection_names,
|
||||
query: query,
|
||||
k: k
|
||||
})
|
||||
})
|
||||
.then(async (res) => {
|
||||
if (!res.ok) throw await res.json();
|
||||
return res.json();
|
||||
})
|
||||
.catch((err) => {
|
||||
error = err.detail;
|
||||
return null;
|
||||
});
|
||||
|
||||
if (error) {
|
||||
throw error;
|
||||
}
|
||||
|
||||
return res;
|
||||
};
|
||||
|
||||
export const scanDocs = async (token: string) => {
|
||||
let error = null;
|
||||
|
||||
const res = await fetch(`${RAG_API_BASE_URL}/scan`, {
|
||||
method: 'GET',
|
||||
headers: {
|
||||
Accept: 'application/json',
|
||||
authorization: `Bearer ${token}`
|
||||
}
|
||||
})
|
||||
.then(async (res) => {
|
||||
if (!res.ok) throw await res.json();
|
||||
return res.json();
|
||||
})
|
||||
.catch((err) => {
|
||||
error = err.detail;
|
||||
return null;
|
||||
});
|
||||
|
||||
if (error) {
|
||||
throw error;
|
||||
}
|
||||
|
||||
return res;
|
||||
};
|
||||
|
||||
export const resetUploadDir = async (token: string) => {
|
||||
let error = null;
|
||||
|
||||
const res = await fetch(`${RAG_API_BASE_URL}/reset/uploads`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
Accept: 'application/json',
|
||||
authorization: `Bearer ${token}`
|
||||
}
|
||||
})
|
||||
.then(async (res) => {
|
||||
if (!res.ok) throw await res.json();
|
||||
return res.json();
|
||||
})
|
||||
.catch((err) => {
|
||||
error = err.detail;
|
||||
return null;
|
||||
});
|
||||
|
||||
if (error) {
|
||||
throw error;
|
||||
}
|
||||
|
||||
return res;
|
||||
};
|
||||
|
||||
export const resetVectorDB = async (token: string) => {
|
||||
let error = null;
|
||||
|
||||
const res = await fetch(`${RAG_API_BASE_URL}/reset/db`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
Accept: 'application/json',
|
||||
authorization: `Bearer ${token}`
|
||||
}
|
||||
})
|
||||
.then(async (res) => {
|
||||
if (!res.ok) throw await res.json();
|
||||
return res.json();
|
||||
})
|
||||
.catch((err) => {
|
||||
error = err.detail;
|
||||
return null;
|
||||
});
|
||||
|
||||
if (error) {
|
||||
throw error;
|
||||
}
|
||||
|
||||
return res;
|
||||
};
|
||||
|
||||
export const getEmbeddingConfig = async (token: string) => {
|
||||
let error = null;
|
||||
|
||||
@ -578,14 +300,140 @@ export const updateRerankingConfig = async (token: string, payload: RerankingMod
|
||||
return res;
|
||||
};
|
||||
|
||||
export const runWebSearch = async (
|
||||
export interface SearchDocument {
|
||||
status: boolean;
|
||||
collection_name: string;
|
||||
filenames: string[];
|
||||
}
|
||||
|
||||
export const processFile = async (token: string, file_id: string) => {
|
||||
let error = null;
|
||||
|
||||
const res = await fetch(`${RAG_API_BASE_URL}/process/file`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
Accept: 'application/json',
|
||||
'Content-Type': 'application/json',
|
||||
authorization: `Bearer ${token}`
|
||||
},
|
||||
body: JSON.stringify({
|
||||
file_id: file_id
|
||||
})
|
||||
})
|
||||
.then(async (res) => {
|
||||
if (!res.ok) throw await res.json();
|
||||
return res.json();
|
||||
})
|
||||
.catch((err) => {
|
||||
error = err.detail;
|
||||
console.log(err);
|
||||
return null;
|
||||
});
|
||||
|
||||
if (error) {
|
||||
throw error;
|
||||
}
|
||||
|
||||
return res;
|
||||
};
|
||||
|
||||
export const processDocsDir = async (token: string) => {
|
||||
let error = null;
|
||||
|
||||
const res = await fetch(`${RAG_API_BASE_URL}/process/dir`, {
|
||||
method: 'GET',
|
||||
headers: {
|
||||
Accept: 'application/json',
|
||||
authorization: `Bearer ${token}`
|
||||
}
|
||||
})
|
||||
.then(async (res) => {
|
||||
if (!res.ok) throw await res.json();
|
||||
return res.json();
|
||||
})
|
||||
.catch((err) => {
|
||||
error = err.detail;
|
||||
return null;
|
||||
});
|
||||
|
||||
if (error) {
|
||||
throw error;
|
||||
}
|
||||
|
||||
return res;
|
||||
};
|
||||
|
||||
export const processYoutubeVideo = async (token: string, url: string) => {
|
||||
let error = null;
|
||||
|
||||
const res = await fetch(`${RAG_API_BASE_URL}/process/youtube`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
Accept: 'application/json',
|
||||
'Content-Type': 'application/json',
|
||||
authorization: `Bearer ${token}`
|
||||
},
|
||||
body: JSON.stringify({
|
||||
url: url
|
||||
})
|
||||
})
|
||||
.then(async (res) => {
|
||||
if (!res.ok) throw await res.json();
|
||||
return res.json();
|
||||
})
|
||||
.catch((err) => {
|
||||
error = err.detail;
|
||||
console.log(err);
|
||||
return null;
|
||||
});
|
||||
|
||||
if (error) {
|
||||
throw error;
|
||||
}
|
||||
|
||||
return res;
|
||||
};
|
||||
|
||||
export const processWeb = async (token: string, collection_name: string, url: string) => {
|
||||
let error = null;
|
||||
|
||||
const res = await fetch(`${RAG_API_BASE_URL}/process/web`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
Accept: 'application/json',
|
||||
'Content-Type': 'application/json',
|
||||
authorization: `Bearer ${token}`
|
||||
},
|
||||
body: JSON.stringify({
|
||||
url: url,
|
||||
collection_name: collection_name
|
||||
})
|
||||
})
|
||||
.then(async (res) => {
|
||||
if (!res.ok) throw await res.json();
|
||||
return res.json();
|
||||
})
|
||||
.catch((err) => {
|
||||
error = err.detail;
|
||||
console.log(err);
|
||||
return null;
|
||||
});
|
||||
|
||||
if (error) {
|
||||
throw error;
|
||||
}
|
||||
|
||||
return res;
|
||||
};
|
||||
|
||||
export const processWebSearch = async (
|
||||
token: string,
|
||||
query: string,
|
||||
collection_name?: string
|
||||
): Promise<SearchDocument | null> => {
|
||||
let error = null;
|
||||
|
||||
const res = await fetch(`${RAG_API_BASE_URL}/web/search`, {
|
||||
const res = await fetch(`${RAG_API_BASE_URL}/process/web/search`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
@ -613,8 +461,128 @@ export const runWebSearch = async (
|
||||
return res;
|
||||
};
|
||||
|
||||
export interface SearchDocument {
|
||||
status: boolean;
|
||||
collection_name: string;
|
||||
filenames: string[];
|
||||
}
|
||||
export const queryDoc = async (
|
||||
token: string,
|
||||
collection_name: string,
|
||||
query: string,
|
||||
k: number | null = null
|
||||
) => {
|
||||
let error = null;
|
||||
|
||||
const res = await fetch(`${RAG_API_BASE_URL}/query/doc`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
Accept: 'application/json',
|
||||
'Content-Type': 'application/json',
|
||||
authorization: `Bearer ${token}`
|
||||
},
|
||||
body: JSON.stringify({
|
||||
collection_name: collection_name,
|
||||
query: query,
|
||||
k: k
|
||||
})
|
||||
})
|
||||
.then(async (res) => {
|
||||
if (!res.ok) throw await res.json();
|
||||
return res.json();
|
||||
})
|
||||
.catch((err) => {
|
||||
error = err.detail;
|
||||
return null;
|
||||
});
|
||||
|
||||
if (error) {
|
||||
throw error;
|
||||
}
|
||||
|
||||
return res;
|
||||
};
|
||||
|
||||
export const queryCollection = async (
|
||||
token: string,
|
||||
collection_names: string,
|
||||
query: string,
|
||||
k: number | null = null
|
||||
) => {
|
||||
let error = null;
|
||||
|
||||
const res = await fetch(`${RAG_API_BASE_URL}/query/collection`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
Accept: 'application/json',
|
||||
'Content-Type': 'application/json',
|
||||
authorization: `Bearer ${token}`
|
||||
},
|
||||
body: JSON.stringify({
|
||||
collection_names: collection_names,
|
||||
query: query,
|
||||
k: k
|
||||
})
|
||||
})
|
||||
.then(async (res) => {
|
||||
if (!res.ok) throw await res.json();
|
||||
return res.json();
|
||||
})
|
||||
.catch((err) => {
|
||||
error = err.detail;
|
||||
return null;
|
||||
});
|
||||
|
||||
if (error) {
|
||||
throw error;
|
||||
}
|
||||
|
||||
return res;
|
||||
};
|
||||
|
||||
export const resetUploadDir = async (token: string) => {
|
||||
let error = null;
|
||||
|
||||
const res = await fetch(`${RAG_API_BASE_URL}/reset/uploads`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
Accept: 'application/json',
|
||||
authorization: `Bearer ${token}`
|
||||
}
|
||||
})
|
||||
.then(async (res) => {
|
||||
if (!res.ok) throw await res.json();
|
||||
return res.json();
|
||||
})
|
||||
.catch((err) => {
|
||||
error = err.detail;
|
||||
return null;
|
||||
});
|
||||
|
||||
if (error) {
|
||||
throw error;
|
||||
}
|
||||
|
||||
return res;
|
||||
};
|
||||
|
||||
export const resetVectorDB = async (token: string) => {
|
||||
let error = null;
|
||||
|
||||
const res = await fetch(`${RAG_API_BASE_URL}/reset/db`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
Accept: 'application/json',
|
||||
authorization: `Bearer ${token}`
|
||||
}
|
||||
})
|
||||
.then(async (res) => {
|
||||
if (!res.ok) throw await res.json();
|
||||
return res.json();
|
||||
})
|
||||
.catch((err) => {
|
||||
error = err.detail;
|
||||
return null;
|
||||
});
|
||||
|
||||
if (error) {
|
||||
throw error;
|
||||
}
|
||||
|
||||
return res;
|
||||
};
|
@ -7,7 +7,7 @@
|
||||
import { deleteAllFiles, deleteFileById } from '$lib/apis/files';
|
||||
import {
|
||||
getQuerySettings,
|
||||
scanDocs,
|
||||
processDocsDir,
|
||||
updateQuerySettings,
|
||||
resetVectorDB,
|
||||
getEmbeddingConfig,
|
||||
@ -17,7 +17,7 @@
|
||||
resetUploadDir,
|
||||
getRAGConfig,
|
||||
updateRAGConfig
|
||||
} from '$lib/apis/rag';
|
||||
} from '$lib/apis/retrieval';
|
||||
import ResetUploadDirConfirmDialog from '$lib/components/common/ConfirmDialog.svelte';
|
||||
import ResetVectorDBConfirmDialog from '$lib/components/common/ConfirmDialog.svelte';
|
||||
|
||||
@ -63,7 +63,7 @@
|
||||
|
||||
const scanHandler = async () => {
|
||||
scanDirLoading = true;
|
||||
const res = await scanDocs(localStorage.token);
|
||||
const res = await processDocsDir(localStorage.token);
|
||||
scanDirLoading = false;
|
||||
|
||||
if (res) {
|
||||
|
@ -1,5 +1,5 @@
|
||||
<script lang="ts">
|
||||
import { getRAGConfig, updateRAGConfig } from '$lib/apis/rag';
|
||||
import { getRAGConfig, updateRAGConfig } from '$lib/apis/retrieval';
|
||||
import Switch from '$lib/components/common/Switch.svelte';
|
||||
|
||||
import { documents, models } from '$lib/stores';
|
||||
|
@ -52,7 +52,7 @@
|
||||
updateChatById
|
||||
} from '$lib/apis/chats';
|
||||
import { generateOpenAIChatCompletion } from '$lib/apis/openai';
|
||||
import { runWebSearch } from '$lib/apis/rag';
|
||||
import { processWebSearch } from '$lib/apis/retrieval';
|
||||
import { createOpenAITextStream } from '$lib/apis/streaming';
|
||||
import { queryMemory } from '$lib/apis/memories';
|
||||
import { getAndUpdateUserLocation, getUserSettings } from '$lib/apis/users';
|
||||
@ -1737,7 +1737,7 @@
|
||||
});
|
||||
history.messages[responseMessageId] = responseMessage;
|
||||
|
||||
const results = await runWebSearch(localStorage.token, searchQuery).catch((error) => {
|
||||
const results = await processWebSearch(localStorage.token, searchQuery).catch((error) => {
|
||||
console.log(error);
|
||||
toast.error(error);
|
||||
|
||||
|
@ -46,6 +46,9 @@
|
||||
chatFiles.splice(fileIdx, 1);
|
||||
chatFiles = chatFiles;
|
||||
}}
|
||||
on:click={() => {
|
||||
console.log(file);
|
||||
}}
|
||||
/>
|
||||
{/each}
|
||||
</div>
|
||||
|
@ -17,7 +17,8 @@
|
||||
import { blobToFile, findWordIndices } from '$lib/utils';
|
||||
|
||||
import { transcribeAudio } from '$lib/apis/audio';
|
||||
import { processDocToVectorDB } from '$lib/apis/rag';
|
||||
|
||||
import { processFile } from '$lib/apis/retrieval';
|
||||
import { uploadFile } from '$lib/apis/files';
|
||||
|
||||
import {
|
||||
@ -158,17 +159,14 @@
|
||||
|
||||
const processFileItem = async (fileItem) => {
|
||||
try {
|
||||
const res = await processDocToVectorDB(localStorage.token, fileItem.id);
|
||||
|
||||
const res = await processFile(localStorage.token, fileItem.id);
|
||||
if (res) {
|
||||
fileItem.status = 'processed';
|
||||
fileItem.collection_name = res.collection_name;
|
||||
files = files;
|
||||
}
|
||||
} catch (e) {
|
||||
// Remove the failed doc from the files array
|
||||
// files = files.filter((f) => f.id !== fileItem.id);
|
||||
toast.error(e);
|
||||
// We keep the file in the files list even if it fails to process
|
||||
fileItem.status = 'processed';
|
||||
files = files;
|
||||
}
|
||||
|
@ -9,7 +9,7 @@
|
||||
import Models from './Commands/Models.svelte';
|
||||
|
||||
import { removeLastWordFromString } from '$lib/utils';
|
||||
import { uploadWebToVectorDB, uploadYoutubeTranscriptionToVectorDB } from '$lib/apis/rag';
|
||||
import { processWeb, processYoutubeVideo } from '$lib/apis/retrieval';
|
||||
|
||||
export let prompt = '';
|
||||
export let files = [];
|
||||
@ -41,7 +41,7 @@
|
||||
|
||||
try {
|
||||
files = [...files, doc];
|
||||
const res = await uploadWebToVectorDB(localStorage.token, '', url);
|
||||
const res = await processWeb(localStorage.token, '', url);
|
||||
|
||||
if (res) {
|
||||
doc.status = 'processed';
|
||||
@ -69,7 +69,7 @@
|
||||
|
||||
try {
|
||||
files = [...files, doc];
|
||||
const res = await uploadYoutubeTranscriptionToVectorDB(localStorage.token, url);
|
||||
const res = await processYoutubeVideo(localStorage.token, url);
|
||||
|
||||
if (res) {
|
||||
doc.status = 'processed';
|
||||
|
@ -8,8 +8,6 @@
|
||||
export let colorClassName = 'bg-white dark:bg-gray-800';
|
||||
export let url: string | null = null;
|
||||
|
||||
export let clickHandler: Function | null = null;
|
||||
|
||||
export let dismissible = false;
|
||||
export let status = 'processed';
|
||||
|
||||
@ -17,7 +15,7 @@
|
||||
export let type: string;
|
||||
export let size: number;
|
||||
|
||||
function formatSize(size) {
|
||||
const formatSize = (size) => {
|
||||
if (size == null) return 'Unknown size';
|
||||
if (typeof size !== 'number' || size < 0) return 'Invalid size';
|
||||
if (size === 0) return '0 B';
|
||||
@ -29,7 +27,7 @@
|
||||
unitIndex++;
|
||||
}
|
||||
return `${size.toFixed(1)} ${units[unitIndex]}`;
|
||||
}
|
||||
};
|
||||
</script>
|
||||
|
||||
<div class="relative group">
|
||||
@ -37,17 +35,7 @@
|
||||
class="h-14 {className} flex items-center space-x-3 {colorClassName} rounded-xl border border-gray-100 dark:border-gray-800 text-left"
|
||||
type="button"
|
||||
on:click={async () => {
|
||||
if (clickHandler === null) {
|
||||
if (url) {
|
||||
if (type === 'file') {
|
||||
window.open(`${url}/content`, '_blank').focus();
|
||||
} else {
|
||||
window.open(`${url}`, '_blank').focus();
|
||||
}
|
||||
}
|
||||
} else {
|
||||
clickHandler();
|
||||
}
|
||||
dispatch('click');
|
||||
}}
|
||||
>
|
||||
<div class="p-4 py-[1.1rem] bg-red-400 text-white rounded-l-xl">
|
||||
|
@ -3,16 +3,13 @@
|
||||
import dayjs from 'dayjs';
|
||||
import { onMount, getContext } from 'svelte';
|
||||
|
||||
import { createNewDoc, getDocs, tagDocByName, updateDocByName } from '$lib/apis/documents';
|
||||
import { getDocs } from '$lib/apis/documents';
|
||||
import Modal from '../common/Modal.svelte';
|
||||
import { documents } from '$lib/stores';
|
||||
import TagInput from '../common/Tags/TagInput.svelte';
|
||||
import Tags from '../common/Tags.svelte';
|
||||
import { addTagById } from '$lib/apis/chats';
|
||||
import { uploadDocToVectorDB } from '$lib/apis/rag';
|
||||
import { transformFileName } from '$lib/utils';
|
||||
import { SUPPORTED_FILE_EXTENSIONS, SUPPORTED_FILE_TYPE } from '$lib/constants';
|
||||
|
||||
import Tags from '../common/Tags.svelte';
|
||||
|
||||
const i18n = getContext('i18n');
|
||||
|
||||
export let show = false;
|
||||
|
@ -8,7 +8,7 @@
|
||||
import { createNewDoc, deleteDocByName, getDocs } from '$lib/apis/documents';
|
||||
|
||||
import { SUPPORTED_FILE_TYPE, SUPPORTED_FILE_EXTENSIONS } from '$lib/constants';
|
||||
import { processDocToVectorDB, uploadDocToVectorDB } from '$lib/apis/rag';
|
||||
import { processFile } from '$lib/apis/retrieval';
|
||||
import { blobToFile, transformFileName } from '$lib/utils';
|
||||
|
||||
import Checkbox from '$lib/components/common/Checkbox.svelte';
|
||||
@ -74,7 +74,7 @@
|
||||
return null;
|
||||
});
|
||||
|
||||
const res = await processDocToVectorDB(localStorage.token, uploadedFile.id).catch((error) => {
|
||||
const res = await processFile(localStorage.token, uploadedFile.id).catch((error) => {
|
||||
toast.error(error);
|
||||
return null;
|
||||
});
|
||||
|
@ -11,7 +11,7 @@ export const OLLAMA_API_BASE_URL = `${WEBUI_BASE_URL}/ollama`;
|
||||
export const OPENAI_API_BASE_URL = `${WEBUI_BASE_URL}/openai`;
|
||||
export const AUDIO_API_BASE_URL = `${WEBUI_BASE_URL}/audio/api/v1`;
|
||||
export const IMAGES_API_BASE_URL = `${WEBUI_BASE_URL}/images/api/v1`;
|
||||
export const RAG_API_BASE_URL = `${WEBUI_BASE_URL}/rag/api/v1`;
|
||||
export const RAG_API_BASE_URL = `${WEBUI_BASE_URL}/retrieval/api/v1`;
|
||||
|
||||
export const WEBUI_VERSION = APP_VERSION;
|
||||
export const WEBUI_BUILD_HASH = APP_BUILD_HASH;
|
||||
|
@ -9,7 +9,7 @@
|
||||
"{{user}}'s Chats": "Els xats de {{user}}",
|
||||
"{{webUIName}} Backend Required": "El Backend de {{webUIName}} és necessari",
|
||||
"*Prompt node ID(s) are required for image generation": "*Els identificadors de nodes d'indicacions són necessaris per a la generació d'imatges",
|
||||
"A new version (v{{LATEST_VERSION}}) is now available.": "",
|
||||
"A new version (v{{LATEST_VERSION}}) is now available.": "Hi ha una nova versió disponible (v{{LATEST_VERSION}}).",
|
||||
"A task model is used when performing tasks such as generating titles for chats and web search queries": "Un model de tasca s'utilitza quan es realitzen tasques com ara generar títols per a xats i consultes de cerca per a la web",
|
||||
"a user": "un usuari",
|
||||
"About": "Sobre",
|
||||
@ -466,7 +466,7 @@
|
||||
"Oops! Looks like the URL is invalid. Please double-check and try again.": "Ui! Sembla que l'URL no és vàlida. Si us plau, revisa-la i torna-ho a provar.",
|
||||
"Oops! There was an error in the previous response. Please try again or contact admin.": "Ui! Hi ha hagut un error en la resposta anterior. Torna a provar-ho o contacta amb un administrador",
|
||||
"Oops! You're using an unsupported method (frontend only). Please serve the WebUI from the backend.": "Ui! Estàs utilitzant un mètode no suportat (només frontend). Si us plau, serveix la WebUI des del backend.",
|
||||
"Open file": "",
|
||||
"Open file": "Obrir arxiu",
|
||||
"Open new chat": "Obre un xat nou",
|
||||
"Open WebUI version (v{{OPEN_WEBUI_VERSION}}) is lower than required version (v{{REQUIRED_VERSION}})": "La versió d'Open WebUI (v{{OPEN_WEBUI_VERSION}}) és inferior a la versió requerida (v{{REQUIRED_VERSION}})",
|
||||
"OpenAI": "OpenAI",
|
||||
@ -478,7 +478,7 @@
|
||||
"Other": "Altres",
|
||||
"Output format": "Format de sortida",
|
||||
"Overview": "Vista general",
|
||||
"page": "",
|
||||
"page": "pàgina",
|
||||
"Password": "Contrasenya",
|
||||
"PDF document (.pdf)": "Document PDF (.pdf)",
|
||||
"PDF Extract Images (OCR)": "Extreu imatges del PDF (OCR)",
|
||||
@ -497,7 +497,7 @@
|
||||
"Plain text (.txt)": "Text pla (.txt)",
|
||||
"Playground": "Zona de jocs",
|
||||
"Please carefully review the following warnings:": "Si us plau, revisa els següents avisos amb cura:",
|
||||
"Please select a reason": "",
|
||||
"Please select a reason": "Si us plau, selecciona una raó",
|
||||
"Positive attitude": "Actitud positiva",
|
||||
"Previous 30 days": "30 dies anteriors",
|
||||
"Previous 7 days": "7 dies anteriors",
|
||||
@ -704,7 +704,7 @@
|
||||
"Unpin": "Alliberar",
|
||||
"Update": "Actualitzar",
|
||||
"Update and Copy Link": "Actualitzar i copiar l'enllaç",
|
||||
"Update for the latest features and improvements.": "",
|
||||
"Update for the latest features and improvements.": "Actualitza per a les darreres característiques i millores.",
|
||||
"Update password": "Actualitzar la contrasenya",
|
||||
"Updated at": "Actualitzat",
|
||||
"Upload": "Pujar",
|
||||
|
@ -1,4 +1,4 @@
|
||||
import { getRAGTemplate } from '$lib/apis/rag';
|
||||
import { getRAGTemplate } from '$lib/apis/retrieval';
|
||||
|
||||
export const RAGTemplate = async (token: string, context: string, query: string) => {
|
||||
let template = await getRAGTemplate(token).catch(() => {
|
||||
|
@ -206,10 +206,10 @@
|
||||
const now = new Date();
|
||||
|
||||
if (now - dismissedUpdateToast > 24 * 60 * 60 * 1000) {
|
||||
await checkForVersionUpdates();
|
||||
checkForVersionUpdates();
|
||||
}
|
||||
} else {
|
||||
await checkForVersionUpdates();
|
||||
checkForVersionUpdates();
|
||||
}
|
||||
}
|
||||
await tick();
|
||||
|
Loading…
Reference in New Issue
Block a user