Merge pull request #10362 from Seniorsimo/usage-openai-compatible

**fix** Added OpenAI usage standard keys to API signature
This commit is contained in:
Timothy Jaeryang Baek 2025-02-19 12:20:41 -08:00 committed by GitHub
commit de7e8fd918
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -23,18 +23,8 @@ def convert_ollama_tool_call_to_openai(tool_calls: dict) -> dict:
openai_tool_calls.append(openai_tool_call)
return openai_tool_calls
def convert_response_ollama_to_openai(ollama_response: dict) -> dict:
model = ollama_response.get("model", "ollama")
message_content = ollama_response.get("message", {}).get("content", "")
tool_calls = ollama_response.get("message", {}).get("tool_calls", None)
openai_tool_calls = None
if tool_calls:
openai_tool_calls = convert_ollama_tool_call_to_openai(tool_calls)
data = ollama_response
usage = {
def convert_ollama_usage_to_openai(data: dict) -> dict:
return {
"response_token/s": (
round(
(
@ -66,14 +56,37 @@ def convert_response_ollama_to_openai(ollama_response: dict) -> dict:
"total_duration": data.get("total_duration", 0),
"load_duration": data.get("load_duration", 0),
"prompt_eval_count": data.get("prompt_eval_count", 0),
"prompt_tokens": int(data.get("prompt_eval_count", 0)), # This is the OpenAI compatible key
"prompt_eval_duration": data.get("prompt_eval_duration", 0),
"eval_count": data.get("eval_count", 0),
"completion_tokens": int(data.get("eval_count", 0)), # This is the OpenAI compatible key
"eval_duration": data.get("eval_duration", 0),
"approximate_total": (lambda s: f"{s // 3600}h{(s % 3600) // 60}m{s % 60}s")(
(data.get("total_duration", 0) or 0) // 1_000_000_000
),
"total_tokens": int( # This is the OpenAI compatible key
data.get("prompt_eval_count", 0) + data.get("eval_count", 0)
),
"completion_tokens_details": { # This is the OpenAI compatible key
"reasoning_tokens": 0,
"accepted_prediction_tokens": 0,
"rejected_prediction_tokens": 0
}
}
def convert_response_ollama_to_openai(ollama_response: dict) -> dict:
model = ollama_response.get("model", "ollama")
message_content = ollama_response.get("message", {}).get("content", "")
tool_calls = ollama_response.get("message", {}).get("tool_calls", None)
openai_tool_calls = None
if tool_calls:
openai_tool_calls = convert_ollama_tool_call_to_openai(tool_calls)
data = ollama_response
usage = convert_ollama_usage_to_openai(data)
response = openai_chat_completion_message_template(
model, message_content, openai_tool_calls, usage
)
@ -96,45 +109,7 @@ async def convert_streaming_response_ollama_to_openai(ollama_streaming_response)
usage = None
if done:
usage = {
"response_token/s": (
round(
(
(
data.get("eval_count", 0)
/ ((data.get("eval_duration", 0) / 10_000_000))
)
* 100
),
2,
)
if data.get("eval_duration", 0) > 0
else "N/A"
),
"prompt_token/s": (
round(
(
(
data.get("prompt_eval_count", 0)
/ ((data.get("prompt_eval_duration", 0) / 10_000_000))
)
* 100
),
2,
)
if data.get("prompt_eval_duration", 0) > 0
else "N/A"
),
"total_duration": data.get("total_duration", 0),
"load_duration": data.get("load_duration", 0),
"prompt_eval_count": data.get("prompt_eval_count", 0),
"prompt_eval_duration": data.get("prompt_eval_duration", 0),
"eval_count": data.get("eval_count", 0),
"eval_duration": data.get("eval_duration", 0),
"approximate_total": (
lambda s: f"{s // 3600}h{(s % 3600) // 60}m{s % 60}s"
)((data.get("total_duration", 0) or 0) // 1_000_000_000),
}
usage = convert_ollama_usage_to_openai(data)
data = openai_chat_chunk_message_template(
model, message_content if not done else None, openai_tool_calls, usage