mirror of
https://github.com/open-webui/open-webui
synced 2024-11-21 23:57:51 +00:00
feat: topic leaderboard
This commit is contained in:
parent
0f4b6cdb67
commit
cde33002c7
790
package-lock.json
generated
790
package-lock.json
generated
File diff suppressed because it is too large
Load Diff
@ -52,6 +52,7 @@
|
|||||||
"@codemirror/lang-python": "^6.1.6",
|
"@codemirror/lang-python": "^6.1.6",
|
||||||
"@codemirror/language-data": "^6.5.1",
|
"@codemirror/language-data": "^6.5.1",
|
||||||
"@codemirror/theme-one-dark": "^6.1.2",
|
"@codemirror/theme-one-dark": "^6.1.2",
|
||||||
|
"@huggingface/transformers": "^3.0.0",
|
||||||
"@pyscript/core": "^0.4.32",
|
"@pyscript/core": "^0.4.32",
|
||||||
"@sveltejs/adapter-node": "^2.0.0",
|
"@sveltejs/adapter-node": "^2.0.0",
|
||||||
"@xyflow/svelte": "^0.1.19",
|
"@xyflow/svelte": "^0.1.19",
|
||||||
|
@ -1,10 +1,16 @@
|
|||||||
<script lang="ts">
|
<script lang="ts">
|
||||||
import { onMount, getContext } from 'svelte';
|
import { onMount, getContext } from 'svelte';
|
||||||
|
|
||||||
import dayjs from 'dayjs';
|
import dayjs from 'dayjs';
|
||||||
import relativeTime from 'dayjs/plugin/relativeTime';
|
import relativeTime from 'dayjs/plugin/relativeTime';
|
||||||
dayjs.extend(relativeTime);
|
dayjs.extend(relativeTime);
|
||||||
|
|
||||||
|
import * as ort from 'onnxruntime-web';
|
||||||
|
import { AutoModel, AutoTokenizer } from '@huggingface/transformers';
|
||||||
|
|
||||||
|
const embedding_model = 'TaylorAI/bge-micro-v2';
|
||||||
|
let tokenizer = null;
|
||||||
|
let model = null;
|
||||||
|
|
||||||
import { models } from '$lib/stores';
|
import { models } from '$lib/stores';
|
||||||
import { deleteFeedbackById, getAllFeedbacks } from '$lib/apis/evaluations';
|
import { deleteFeedbackById, getAllFeedbacks } from '$lib/apis/evaluations';
|
||||||
|
|
||||||
@ -13,49 +19,104 @@
|
|||||||
import Tooltip from '../common/Tooltip.svelte';
|
import Tooltip from '../common/Tooltip.svelte';
|
||||||
import Badge from '../common/Badge.svelte';
|
import Badge from '../common/Badge.svelte';
|
||||||
import Pagination from '../common/Pagination.svelte';
|
import Pagination from '../common/Pagination.svelte';
|
||||||
|
import MagnifyingGlass from '../icons/MagnifyingGlass.svelte';
|
||||||
|
|
||||||
const i18n = getContext('i18n');
|
const i18n = getContext('i18n');
|
||||||
|
|
||||||
let rankedModels = [];
|
let rankedModels = [];
|
||||||
let feedbacks = [];
|
let feedbacks = [];
|
||||||
|
|
||||||
|
let query = '';
|
||||||
let page = 1;
|
let page = 1;
|
||||||
|
|
||||||
|
let tagEmbeddings = new Map();
|
||||||
|
|
||||||
|
let loaded = false;
|
||||||
|
let debounceTimer;
|
||||||
|
|
||||||
$: paginatedFeedbacks = feedbacks.slice((page - 1) * 10, page * 10);
|
$: paginatedFeedbacks = feedbacks.slice((page - 1) * 10, page * 10);
|
||||||
|
|
||||||
type Feedback = {
|
type Feedback = {
|
||||||
model_id: string;
|
id: string;
|
||||||
sibling_model_ids?: string[];
|
data: {
|
||||||
rating: number;
|
rating: number;
|
||||||
|
model_id: string;
|
||||||
|
sibling_model_ids: string[] | null;
|
||||||
|
reason: string;
|
||||||
|
comment: string;
|
||||||
|
tags: string[];
|
||||||
|
};
|
||||||
|
user: {
|
||||||
|
name: string;
|
||||||
|
profile_image_url: string;
|
||||||
|
};
|
||||||
|
updated_at: number;
|
||||||
};
|
};
|
||||||
|
|
||||||
type ModelStats = {
|
type ModelStats = {
|
||||||
rating: number;
|
rating: number;
|
||||||
won: number;
|
won: number;
|
||||||
draw: number;
|
|
||||||
lost: number;
|
lost: number;
|
||||||
};
|
};
|
||||||
|
|
||||||
function calculateModelStats(feedbacks: Feedback[]): Map<string, ModelStats> {
|
//////////////////////
|
||||||
|
//
|
||||||
|
// Rank models by Elo rating
|
||||||
|
//
|
||||||
|
//////////////////////
|
||||||
|
|
||||||
|
const rankHandler = async (similarities: Map<string, number> = new Map()) => {
|
||||||
|
const modelStats = calculateModelStats(feedbacks, similarities);
|
||||||
|
|
||||||
|
rankedModels = $models
|
||||||
|
.filter((m) => m?.owned_by !== 'arena' && (m?.info?.meta?.hidden ?? false) !== true)
|
||||||
|
.map((model) => {
|
||||||
|
const stats = modelStats.get(model.id);
|
||||||
|
return {
|
||||||
|
...model,
|
||||||
|
rating: stats ? Math.round(stats.rating) : '-',
|
||||||
|
stats: {
|
||||||
|
count: stats ? stats.won + stats.lost : 0,
|
||||||
|
won: stats ? stats.won.toString() : '-',
|
||||||
|
lost: stats ? stats.lost.toString() : '-'
|
||||||
|
}
|
||||||
|
};
|
||||||
|
})
|
||||||
|
.sort((a, b) => {
|
||||||
|
if (a.rating === '-' && b.rating !== '-') return 1;
|
||||||
|
if (b.rating === '-' && a.rating !== '-') return -1;
|
||||||
|
if (a.rating !== '-' && b.rating !== '-') return b.rating - a.rating;
|
||||||
|
return a.name.localeCompare(b.name);
|
||||||
|
});
|
||||||
|
};
|
||||||
|
|
||||||
|
function calculateModelStats(
|
||||||
|
feedbacks: Feedback[],
|
||||||
|
similarities: Map<string, number>
|
||||||
|
): Map<string, ModelStats> {
|
||||||
const stats = new Map<string, ModelStats>();
|
const stats = new Map<string, ModelStats>();
|
||||||
const K = 32;
|
const K = 32;
|
||||||
|
|
||||||
function getOrDefaultStats(modelId: string): ModelStats {
|
function getOrDefaultStats(modelId: string): ModelStats {
|
||||||
return stats.get(modelId) || { rating: 1000, won: 0, draw: 0, lost: 0 };
|
return stats.get(modelId) || { rating: 1000, won: 0, lost: 0 };
|
||||||
}
|
}
|
||||||
|
|
||||||
function updateStats(modelId: string, ratingChange: number, outcome: number) {
|
function updateStats(modelId: string, ratingChange: number, outcome: number) {
|
||||||
const currentStats = getOrDefaultStats(modelId);
|
const currentStats = getOrDefaultStats(modelId);
|
||||||
currentStats.rating += ratingChange;
|
currentStats.rating += ratingChange;
|
||||||
if (outcome === 1) currentStats.won++;
|
if (outcome === 1) currentStats.won++;
|
||||||
else if (outcome === 0.5) currentStats.draw++;
|
|
||||||
else if (outcome === 0) currentStats.lost++;
|
else if (outcome === 0) currentStats.lost++;
|
||||||
stats.set(modelId, currentStats);
|
stats.set(modelId, currentStats);
|
||||||
}
|
}
|
||||||
|
|
||||||
function calculateEloChange(ratingA: number, ratingB: number, outcome: number): number {
|
function calculateEloChange(
|
||||||
|
ratingA: number,
|
||||||
|
ratingB: number,
|
||||||
|
outcome: number,
|
||||||
|
similarity: number
|
||||||
|
): number {
|
||||||
const expectedScore = 1 / (1 + Math.pow(10, (ratingB - ratingA) / 400));
|
const expectedScore = 1 / (1 + Math.pow(10, (ratingB - ratingA) / 400));
|
||||||
return K * (outcome - expectedScore);
|
return K * (outcome - expectedScore) * similarity;
|
||||||
}
|
}
|
||||||
|
|
||||||
feedbacks.forEach((feedback) => {
|
feedbacks.forEach((feedback) => {
|
||||||
@ -77,11 +138,13 @@
|
|||||||
return; // Skip invalid ratings
|
return; // Skip invalid ratings
|
||||||
}
|
}
|
||||||
|
|
||||||
|
const similarity = similarities.get(feedback.id) || 1;
|
||||||
|
|
||||||
const opponents = feedback.data.sibling_model_ids || [];
|
const opponents = feedback.data.sibling_model_ids || [];
|
||||||
opponents.forEach((modelB) => {
|
opponents.forEach((modelB) => {
|
||||||
const statsB = getOrDefaultStats(modelB);
|
const statsB = getOrDefaultStats(modelB);
|
||||||
const changeA = calculateEloChange(statsA.rating, statsB.rating, outcome);
|
const changeA = calculateEloChange(statsA.rating, statsB.rating, outcome, similarity);
|
||||||
const changeB = calculateEloChange(statsB.rating, statsA.rating, 1 - outcome);
|
const changeB = calculateEloChange(statsB.rating, statsA.rating, 1 - outcome, similarity);
|
||||||
|
|
||||||
updateStats(modelA, changeA, outcome);
|
updateStats(modelA, changeA, outcome);
|
||||||
updateStats(modelB, changeB, 1 - outcome);
|
updateStats(modelB, changeB, 1 - outcome);
|
||||||
@ -91,6 +154,108 @@
|
|||||||
return stats;
|
return stats;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//////////////////////
|
||||||
|
//
|
||||||
|
// Calculate cosine similarity
|
||||||
|
//
|
||||||
|
//////////////////////
|
||||||
|
|
||||||
|
const cosineSimilarity = (vecA, vecB) => {
|
||||||
|
// Ensure the lengths of the vectors are the same
|
||||||
|
if (vecA.length !== vecB.length) {
|
||||||
|
throw new Error('Vectors must be the same length');
|
||||||
|
}
|
||||||
|
|
||||||
|
// Calculate the dot product
|
||||||
|
let dotProduct = 0;
|
||||||
|
let normA = 0;
|
||||||
|
let normB = 0;
|
||||||
|
|
||||||
|
for (let i = 0; i < vecA.length; i++) {
|
||||||
|
dotProduct += vecA[i] * vecB[i];
|
||||||
|
normA += vecA[i] ** 2;
|
||||||
|
normB += vecB[i] ** 2;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Calculate the magnitudes
|
||||||
|
normA = Math.sqrt(normA);
|
||||||
|
normB = Math.sqrt(normB);
|
||||||
|
|
||||||
|
// Avoid division by zero
|
||||||
|
if (normA === 0 || normB === 0) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Return the cosine similarity
|
||||||
|
return dotProduct / (normA * normB);
|
||||||
|
};
|
||||||
|
|
||||||
|
const calculateMaxSimilarity = (queryEmbedding, tagEmbeddings: Map<string, number[]>) => {
|
||||||
|
let maxSimilarity = 0;
|
||||||
|
for (const tagEmbedding of tagEmbeddings.values()) {
|
||||||
|
const similarity = cosineSimilarity(queryEmbedding, tagEmbedding);
|
||||||
|
maxSimilarity = Math.max(maxSimilarity, similarity);
|
||||||
|
}
|
||||||
|
return maxSimilarity;
|
||||||
|
};
|
||||||
|
|
||||||
|
//////////////////////
|
||||||
|
//
|
||||||
|
// Embedding functions
|
||||||
|
//
|
||||||
|
//////////////////////
|
||||||
|
|
||||||
|
const getEmbeddings = async (text: string) => {
|
||||||
|
const tokens = await tokenizer(text);
|
||||||
|
const output = await model(tokens);
|
||||||
|
|
||||||
|
// Perform mean pooling on the last hidden states
|
||||||
|
const embeddings = output.last_hidden_state.mean(1);
|
||||||
|
return embeddings.ort_tensor.data;
|
||||||
|
};
|
||||||
|
|
||||||
|
const getTagEmbeddings = async (tags: string[]) => {
|
||||||
|
const embeddings = new Map();
|
||||||
|
for (const tag of tags) {
|
||||||
|
if (!tagEmbeddings.has(tag)) {
|
||||||
|
tagEmbeddings.set(tag, await getEmbeddings(tag));
|
||||||
|
}
|
||||||
|
embeddings.set(tag, tagEmbeddings.get(tag));
|
||||||
|
}
|
||||||
|
return embeddings;
|
||||||
|
};
|
||||||
|
|
||||||
|
const debouncedQueryHandler = async () => {
|
||||||
|
if (query.trim() === '') {
|
||||||
|
rankHandler();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
clearTimeout(debounceTimer);
|
||||||
|
|
||||||
|
debounceTimer = setTimeout(async () => {
|
||||||
|
const queryEmbedding = await getEmbeddings(query);
|
||||||
|
const similarities = new Map<string, number>();
|
||||||
|
|
||||||
|
for (const feedback of feedbacks) {
|
||||||
|
const feedbackTags = feedback.data.tags || [];
|
||||||
|
const tagEmbeddings = await getTagEmbeddings(feedbackTags);
|
||||||
|
const maxSimilarity = calculateMaxSimilarity(queryEmbedding, tagEmbeddings);
|
||||||
|
similarities.set(feedback.id, maxSimilarity);
|
||||||
|
}
|
||||||
|
|
||||||
|
rankHandler(similarities);
|
||||||
|
}, 1500); // Debounce for 1.5 seconds
|
||||||
|
};
|
||||||
|
|
||||||
|
$: query, debouncedQueryHandler();
|
||||||
|
|
||||||
|
//////////////////////
|
||||||
|
//
|
||||||
|
// CRUD operations
|
||||||
|
//
|
||||||
|
//////////////////////
|
||||||
|
|
||||||
const deleteFeedbackHandler = async (feedbackId: string) => {
|
const deleteFeedbackHandler = async (feedbackId: string) => {
|
||||||
const response = await deleteFeedbackById(localStorage.token, feedbackId).catch((err) => {
|
const response = await deleteFeedbackById(localStorage.token, feedbackId).catch((err) => {
|
||||||
toast.error(err);
|
toast.error(err);
|
||||||
@ -101,51 +266,24 @@
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
const rankHandler = async () => {
|
|
||||||
const modelStats = calculateModelStats(feedbacks);
|
|
||||||
|
|
||||||
rankedModels = $models
|
|
||||||
.filter((m) => m?.owned_by !== 'arena' && (m?.info?.meta?.hidden ?? false) !== true)
|
|
||||||
.map((model) => {
|
|
||||||
const stats = modelStats.get(model.id);
|
|
||||||
return {
|
|
||||||
...model,
|
|
||||||
rating: stats ? Math.round(stats.rating) : '-',
|
|
||||||
stats: {
|
|
||||||
count: stats ? stats.won + stats.draw + stats.lost : 0,
|
|
||||||
won: stats ? stats.won.toString() : '-',
|
|
||||||
lost: stats ? stats.lost.toString() : '-'
|
|
||||||
}
|
|
||||||
};
|
|
||||||
})
|
|
||||||
.sort((a, b) => {
|
|
||||||
// Handle sorting by rating ('-' goes to the end)
|
|
||||||
if (a.rating === '-' && b.rating !== '-') return 1;
|
|
||||||
if (b.rating === '-' && a.rating !== '-') return -1;
|
|
||||||
|
|
||||||
// If both have ratings (non '-'), sort by rating numerically (descending)
|
|
||||||
if (a.rating !== '-' && b.rating !== '-') return b.rating - a.rating;
|
|
||||||
|
|
||||||
// If both ratings are '-', sort alphabetically (by 'name')
|
|
||||||
return a.name.localeCompare(b.name);
|
|
||||||
});
|
|
||||||
};
|
|
||||||
|
|
||||||
$: if (feedbacks) {
|
|
||||||
rankHandler();
|
|
||||||
}
|
|
||||||
|
|
||||||
let loaded = false;
|
|
||||||
onMount(async () => {
|
onMount(async () => {
|
||||||
feedbacks = await getAllFeedbacks(localStorage.token);
|
feedbacks = await getAllFeedbacks(localStorage.token);
|
||||||
|
|
||||||
loaded = true;
|
loaded = true;
|
||||||
|
|
||||||
|
tokenizer = await AutoTokenizer.from_pretrained(embedding_model);
|
||||||
|
model = await AutoModel.from_pretrained(embedding_model);
|
||||||
|
|
||||||
|
// Pre-compute embeddings for all unique tags
|
||||||
|
const allTags = new Set(feedbacks.flatMap((feedback) => feedback.data.tags || []));
|
||||||
|
await getTagEmbeddings(Array.from(allTags));
|
||||||
|
|
||||||
|
rankHandler();
|
||||||
});
|
});
|
||||||
</script>
|
</script>
|
||||||
|
|
||||||
{#if loaded}
|
{#if loaded}
|
||||||
<div class="mt-0.5 mb-2 gap-1 flex flex-col md:flex-row justify-between">
|
<div class="mt-0.5 mb-2 gap-1 flex flex-col md:flex-row justify-between">
|
||||||
<div class="flex md:self-center text-lg font-medium px-0.5">
|
<div class="flex md:self-center text-lg font-medium px-0.5 shrink-0">
|
||||||
{$i18n.t('Leaderboard')}
|
{$i18n.t('Leaderboard')}
|
||||||
|
|
||||||
<div class="flex self-center w-[1px] h-6 mx-2.5 bg-gray-50 dark:bg-gray-850" />
|
<div class="flex self-center w-[1px] h-6 mx-2.5 bg-gray-50 dark:bg-gray-850" />
|
||||||
@ -153,6 +291,21 @@
|
|||||||
<span class="text-lg font-medium text-gray-500 dark:text-gray-300">{rankedModels.length}</span
|
<span class="text-lg font-medium text-gray-500 dark:text-gray-300">{rankedModels.length}</span
|
||||||
>
|
>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
|
<div class=" flex space-x-2">
|
||||||
|
<Tooltip content={$i18n.t('Re-rank models by topic similarity')}>
|
||||||
|
<div class="flex flex-1">
|
||||||
|
<div class=" self-center ml-1 mr-3">
|
||||||
|
<MagnifyingGlass className="size-3" />
|
||||||
|
</div>
|
||||||
|
<input
|
||||||
|
class=" w-full text-sm pr-4 py-1 rounded-r-xl outline-none bg-transparent"
|
||||||
|
bind:value={query}
|
||||||
|
placeholder={$i18n.t('Search')}
|
||||||
|
/>
|
||||||
|
</div>
|
||||||
|
</Tooltip>
|
||||||
|
</div>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
<div
|
<div
|
||||||
|
Loading…
Reference in New Issue
Block a user