diff --git a/backend/open_webui/apps/retrieval/vector/dbs/qdrant.py b/backend/open_webui/apps/retrieval/vector/dbs/qdrant.py index 6ef00fff0..a0e93a843 100644 --- a/backend/open_webui/apps/retrieval/vector/dbs/qdrant.py +++ b/backend/open_webui/apps/retrieval/vector/dbs/qdrant.py @@ -1,4 +1,3 @@ -import logging from typing import Optional from qdrant_client import QdrantClient as Qclient @@ -8,10 +7,6 @@ from qdrant_client.models import models from open_webui.apps.retrieval.vector.main import VectorItem, SearchResult, GetResult from open_webui.config import QDRANT_URI -log = logging.getLogger(__name__) -log.setLevel("INFO") - - class QdrantClient: def __init__(self): self.collection_prefix = "open-webui" @@ -44,7 +39,7 @@ class QdrantClient: vectors_config=models.VectorParams(size=dimension, distance=models.Distance.COSINE), ) - log.info(f"collection {collection_name_with_prefix} successfully created!") + print(f"collection {collection_name_with_prefix} successfully created!") def _create_collection_if_not_exists(self, collection_name, dimension): if not self.has_collection( @@ -65,7 +60,6 @@ class QdrantClient: ) -> Optional[SearchResult]: # Search for the nearest neighbor items based on the vectors and return 'limit' number of results. - log.info("start search...") query_response = self.client.query_points( collection_name=f"{self.collection_prefix}_{collection_name}", query=vectors[0], @@ -90,7 +84,6 @@ class QdrantClient: field_conditions.append( models.FieldCondition(key=f"metadata.{key}", match=models.MatchValue(value=value))) - log.info("start search...") points = self.client.query_points( collection_name=f"{self.collection_prefix}_{collection_name}", query_filter=models.Filter(should=field_conditions), @@ -164,15 +157,16 @@ class QdrantClient: self.client.delete_collection(collection_name=collection_name.name) def create_points(self, items: list[VectorItem]): - vectors = [item["vector"] for item in items] - log.info("insert points...") points = [] for idx, item in enumerate(items): points.append( PointStruct( id=item["id"], - vector=vectors[idx], - payload={"text": item["text"], "metadata": item["metadata"]}, + vector=item["vector"], + payload={ + "text": item["text"], + "metadata": item["metadata"] + }, ) ) return points