mirror of
https://github.com/open-webui/open-webui
synced 2024-11-18 22:42:50 +00:00
feat: openai embeddings integration
This commit is contained in:
parent
b48e73fa43
commit
b1b72441bb
@ -659,7 +659,7 @@ def generate_ollama_embeddings(
|
|||||||
url_idx: Optional[int] = None,
|
url_idx: Optional[int] = None,
|
||||||
):
|
):
|
||||||
|
|
||||||
log.info("generate_ollama_embeddings", form_data)
|
log.info(f"generate_ollama_embeddings {form_data}")
|
||||||
|
|
||||||
if url_idx == None:
|
if url_idx == None:
|
||||||
model = form_data.model
|
model = form_data.model
|
||||||
@ -688,7 +688,7 @@ def generate_ollama_embeddings(
|
|||||||
|
|
||||||
data = r.json()
|
data = r.json()
|
||||||
|
|
||||||
log.info("generate_ollama_embeddings", data)
|
log.info(f"generate_ollama_embeddings {data}")
|
||||||
|
|
||||||
if "embedding" in data:
|
if "embedding" in data:
|
||||||
return data["embedding"]
|
return data["embedding"]
|
||||||
|
@ -421,7 +421,7 @@ def store_data_in_vector_db(data, collection_name, overwrite: bool = False) -> b
|
|||||||
docs = text_splitter.split_documents(data)
|
docs = text_splitter.split_documents(data)
|
||||||
|
|
||||||
if len(docs) > 0:
|
if len(docs) > 0:
|
||||||
log.info("store_data_in_vector_db", "store_docs_in_vector_db")
|
log.info(f"store_data_in_vector_db {docs}")
|
||||||
return store_docs_in_vector_db(docs, collection_name, overwrite), None
|
return store_docs_in_vector_db(docs, collection_name, overwrite), None
|
||||||
else:
|
else:
|
||||||
raise ValueError(ERROR_MESSAGES.EMPTY_CONTENT)
|
raise ValueError(ERROR_MESSAGES.EMPTY_CONTENT)
|
||||||
@ -440,7 +440,7 @@ def store_text_in_vector_db(
|
|||||||
|
|
||||||
|
|
||||||
def store_docs_in_vector_db(docs, collection_name, overwrite: bool = False) -> bool:
|
def store_docs_in_vector_db(docs, collection_name, overwrite: bool = False) -> bool:
|
||||||
log.info("store_docs_in_vector_db", docs, collection_name)
|
log.info(f"store_docs_in_vector_db {docs} {collection_name}")
|
||||||
|
|
||||||
texts = [doc.page_content for doc in docs]
|
texts = [doc.page_content for doc in docs]
|
||||||
metadatas = [doc.metadata for doc in docs]
|
metadatas = [doc.metadata for doc in docs]
|
||||||
@ -468,6 +468,8 @@ def store_docs_in_vector_db(docs, collection_name, overwrite: bool = False) -> b
|
|||||||
collection.add(*batch)
|
collection.add(*batch)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
|
collection = CHROMA_CLIENT.create_collection(name=collection_name)
|
||||||
|
|
||||||
if app.state.RAG_EMBEDDING_ENGINE == "ollama":
|
if app.state.RAG_EMBEDDING_ENGINE == "ollama":
|
||||||
embeddings = [
|
embeddings = [
|
||||||
generate_ollama_embeddings(
|
generate_ollama_embeddings(
|
||||||
|
@ -6,9 +6,12 @@ import requests
|
|||||||
|
|
||||||
|
|
||||||
from huggingface_hub import snapshot_download
|
from huggingface_hub import snapshot_download
|
||||||
|
from apps.ollama.main import generate_ollama_embeddings, GenerateEmbeddingsForm
|
||||||
|
|
||||||
|
|
||||||
from config import SRC_LOG_LEVELS, CHROMA_CLIENT
|
from config import SRC_LOG_LEVELS, CHROMA_CLIENT
|
||||||
|
|
||||||
|
|
||||||
log = logging.getLogger(__name__)
|
log = logging.getLogger(__name__)
|
||||||
log.setLevel(SRC_LOG_LEVELS["RAG"])
|
log.setLevel(SRC_LOG_LEVELS["RAG"])
|
||||||
|
|
||||||
@ -32,7 +35,7 @@ def query_doc(collection_name: str, query: str, k: int, embedding_function):
|
|||||||
def query_embeddings_doc(collection_name: str, query_embeddings, k: int):
|
def query_embeddings_doc(collection_name: str, query_embeddings, k: int):
|
||||||
try:
|
try:
|
||||||
# if you use docker use the model from the environment variable
|
# if you use docker use the model from the environment variable
|
||||||
log.info("query_embeddings_doc", query_embeddings)
|
log.info(f"query_embeddings_doc {query_embeddings}")
|
||||||
collection = CHROMA_CLIENT.get_collection(
|
collection = CHROMA_CLIENT.get_collection(
|
||||||
name=collection_name,
|
name=collection_name,
|
||||||
)
|
)
|
||||||
@ -118,7 +121,7 @@ def query_collection(
|
|||||||
def query_embeddings_collection(collection_names: List[str], query_embeddings, k: int):
|
def query_embeddings_collection(collection_names: List[str], query_embeddings, k: int):
|
||||||
|
|
||||||
results = []
|
results = []
|
||||||
log.info("query_embeddings_collection", query_embeddings)
|
log.info(f"query_embeddings_collection {query_embeddings}")
|
||||||
|
|
||||||
for collection_name in collection_names:
|
for collection_name in collection_names:
|
||||||
try:
|
try:
|
||||||
@ -141,7 +144,17 @@ def rag_template(template: str, context: str, query: str):
|
|||||||
return template
|
return template
|
||||||
|
|
||||||
|
|
||||||
def rag_messages(docs, messages, template, k, embedding_function):
|
def rag_messages(
|
||||||
|
docs,
|
||||||
|
messages,
|
||||||
|
template,
|
||||||
|
k,
|
||||||
|
embedding_engine,
|
||||||
|
embedding_model,
|
||||||
|
embedding_function,
|
||||||
|
openai_key,
|
||||||
|
openai_url,
|
||||||
|
):
|
||||||
log.debug(f"docs: {docs}")
|
log.debug(f"docs: {docs}")
|
||||||
|
|
||||||
last_user_message_idx = None
|
last_user_message_idx = None
|
||||||
@ -175,6 +188,11 @@ def rag_messages(docs, messages, template, k, embedding_function):
|
|||||||
context = None
|
context = None
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
|
||||||
|
if doc["type"] == "text":
|
||||||
|
context = doc["content"]
|
||||||
|
else:
|
||||||
|
if embedding_engine == "":
|
||||||
if doc["type"] == "collection":
|
if doc["type"] == "collection":
|
||||||
context = query_collection(
|
context = query_collection(
|
||||||
collection_names=doc["collection_names"],
|
collection_names=doc["collection_names"],
|
||||||
@ -182,8 +200,6 @@ def rag_messages(docs, messages, template, k, embedding_function):
|
|||||||
k=k,
|
k=k,
|
||||||
embedding_function=embedding_function,
|
embedding_function=embedding_function,
|
||||||
)
|
)
|
||||||
elif doc["type"] == "text":
|
|
||||||
context = doc["content"]
|
|
||||||
else:
|
else:
|
||||||
context = query_doc(
|
context = query_doc(
|
||||||
collection_name=doc["collection_name"],
|
collection_name=doc["collection_name"],
|
||||||
@ -191,6 +207,38 @@ def rag_messages(docs, messages, template, k, embedding_function):
|
|||||||
k=k,
|
k=k,
|
||||||
embedding_function=embedding_function,
|
embedding_function=embedding_function,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
else:
|
||||||
|
if embedding_engine == "ollama":
|
||||||
|
query_embeddings = generate_ollama_embeddings(
|
||||||
|
GenerateEmbeddingsForm(
|
||||||
|
**{
|
||||||
|
"model": embedding_model,
|
||||||
|
"prompt": query,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
)
|
||||||
|
elif embedding_engine == "openai":
|
||||||
|
query_embeddings = generate_openai_embeddings(
|
||||||
|
model=embedding_model,
|
||||||
|
text=query,
|
||||||
|
key=openai_key,
|
||||||
|
url=openai_url,
|
||||||
|
)
|
||||||
|
|
||||||
|
if doc["type"] == "collection":
|
||||||
|
context = query_embeddings_collection(
|
||||||
|
collection_names=doc["collection_names"],
|
||||||
|
query_embeddings=query_embeddings,
|
||||||
|
k=k,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
context = query_embeddings_doc(
|
||||||
|
collection_name=doc["collection_name"],
|
||||||
|
query_embeddings=query_embeddings,
|
||||||
|
k=k,
|
||||||
|
)
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
log.exception(e)
|
log.exception(e)
|
||||||
context = None
|
context = None
|
||||||
|
@ -114,7 +114,11 @@ class RAGMiddleware(BaseHTTPMiddleware):
|
|||||||
data["messages"],
|
data["messages"],
|
||||||
rag_app.state.RAG_TEMPLATE,
|
rag_app.state.RAG_TEMPLATE,
|
||||||
rag_app.state.TOP_K,
|
rag_app.state.TOP_K,
|
||||||
|
rag_app.state.RAG_EMBEDDING_ENGINE,
|
||||||
|
rag_app.state.RAG_EMBEDDING_MODEL,
|
||||||
rag_app.state.sentence_transformer_ef,
|
rag_app.state.sentence_transformer_ef,
|
||||||
|
rag_app.state.RAG_OPENAI_API_KEY,
|
||||||
|
rag_app.state.RAG_OPENAI_API_BASE_URL,
|
||||||
)
|
)
|
||||||
del data["docs"]
|
del data["docs"]
|
||||||
|
|
||||||
|
@ -373,7 +373,13 @@ export const getEmbeddingConfig = async (token: string) => {
|
|||||||
return res;
|
return res;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
type OpenAIConfigForm = {
|
||||||
|
key: string;
|
||||||
|
url: string;
|
||||||
|
};
|
||||||
|
|
||||||
type EmbeddingModelUpdateForm = {
|
type EmbeddingModelUpdateForm = {
|
||||||
|
openai_config?: OpenAIConfigForm;
|
||||||
embedding_engine: string;
|
embedding_engine: string;
|
||||||
embedding_model: string;
|
embedding_model: string;
|
||||||
};
|
};
|
||||||
|
@ -29,6 +29,9 @@
|
|||||||
let embeddingEngine = '';
|
let embeddingEngine = '';
|
||||||
let embeddingModel = '';
|
let embeddingModel = '';
|
||||||
|
|
||||||
|
let openAIKey = '';
|
||||||
|
let openAIUrl = '';
|
||||||
|
|
||||||
let chunkSize = 0;
|
let chunkSize = 0;
|
||||||
let chunkOverlap = 0;
|
let chunkOverlap = 0;
|
||||||
let pdfExtractImages = true;
|
let pdfExtractImages = true;
|
||||||
@ -50,15 +53,6 @@
|
|||||||
};
|
};
|
||||||
|
|
||||||
const embeddingModelUpdateHandler = async () => {
|
const embeddingModelUpdateHandler = async () => {
|
||||||
if (embeddingModel === '') {
|
|
||||||
toast.error(
|
|
||||||
$i18n.t(
|
|
||||||
'Model filesystem path detected. Model shortname is required for update, cannot continue.'
|
|
||||||
)
|
|
||||||
);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (embeddingEngine === '' && embeddingModel.split('/').length - 1 > 1) {
|
if (embeddingEngine === '' && embeddingModel.split('/').length - 1 > 1) {
|
||||||
toast.error(
|
toast.error(
|
||||||
$i18n.t(
|
$i18n.t(
|
||||||
@ -67,21 +61,46 @@
|
|||||||
);
|
);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
if (embeddingEngine === 'ollama' && embeddingModel === '') {
|
||||||
|
toast.error(
|
||||||
|
$i18n.t(
|
||||||
|
'Model filesystem path detected. Model shortname is required for update, cannot continue.'
|
||||||
|
)
|
||||||
|
);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (embeddingEngine === 'openai' && embeddingModel === '') {
|
||||||
|
toast.error(
|
||||||
|
$i18n.t(
|
||||||
|
'Model filesystem path detected. Model shortname is required for update, cannot continue.'
|
||||||
|
)
|
||||||
|
);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if ((embeddingEngine === 'openai' && openAIKey === '') || openAIUrl === '') {
|
||||||
|
toast.error($i18n.t('OpenAI URL/Key required.'));
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
console.log('Update embedding model attempt:', embeddingModel);
|
console.log('Update embedding model attempt:', embeddingModel);
|
||||||
|
|
||||||
updateEmbeddingModelLoading = true;
|
updateEmbeddingModelLoading = true;
|
||||||
const res = await updateEmbeddingConfig(localStorage.token, {
|
const res = await updateEmbeddingConfig(localStorage.token, {
|
||||||
embedding_engine: embeddingEngine,
|
embedding_engine: embeddingEngine,
|
||||||
embedding_model: embeddingModel
|
embedding_model: embeddingModel,
|
||||||
|
...(embeddingEngine === 'openai'
|
||||||
|
? {
|
||||||
|
openai_config: {
|
||||||
|
key: openAIKey,
|
||||||
|
url: openAIUrl
|
||||||
|
}
|
||||||
|
}
|
||||||
|
: {})
|
||||||
}).catch(async (error) => {
|
}).catch(async (error) => {
|
||||||
toast.error(error);
|
toast.error(error);
|
||||||
|
await setEmbeddingConfig();
|
||||||
const embeddingConfig = await getEmbeddingConfig(localStorage.token);
|
|
||||||
if (embeddingConfig) {
|
|
||||||
embeddingEngine = embeddingConfig.embedding_engine;
|
|
||||||
embeddingModel = embeddingConfig.embedding_model;
|
|
||||||
}
|
|
||||||
return null;
|
return null;
|
||||||
});
|
});
|
||||||
updateEmbeddingModelLoading = false;
|
updateEmbeddingModelLoading = false;
|
||||||
@ -89,7 +108,7 @@
|
|||||||
if (res) {
|
if (res) {
|
||||||
console.log('embeddingModelUpdateHandler:', res);
|
console.log('embeddingModelUpdateHandler:', res);
|
||||||
if (res.status === true) {
|
if (res.status === true) {
|
||||||
toast.success($i18n.t('Model {{embedding_model}} update complete!', res), {
|
toast.success($i18n.t('Embedding model set to "{{embedding_model}}"', res), {
|
||||||
duration: 1000 * 10
|
duration: 1000 * 10
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
@ -107,6 +126,18 @@
|
|||||||
querySettings = await updateQuerySettings(localStorage.token, querySettings);
|
querySettings = await updateQuerySettings(localStorage.token, querySettings);
|
||||||
};
|
};
|
||||||
|
|
||||||
|
const setEmbeddingConfig = async () => {
|
||||||
|
const embeddingConfig = await getEmbeddingConfig(localStorage.token);
|
||||||
|
|
||||||
|
if (embeddingConfig) {
|
||||||
|
embeddingEngine = embeddingConfig.embedding_engine;
|
||||||
|
embeddingModel = embeddingConfig.embedding_model;
|
||||||
|
|
||||||
|
openAIKey = embeddingConfig.openai_config.key;
|
||||||
|
openAIUrl = embeddingConfig.openai_config.url;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
onMount(async () => {
|
onMount(async () => {
|
||||||
const res = await getRAGConfig(localStorage.token);
|
const res = await getRAGConfig(localStorage.token);
|
||||||
|
|
||||||
@ -117,12 +148,7 @@
|
|||||||
chunkOverlap = res.chunk.chunk_overlap;
|
chunkOverlap = res.chunk.chunk_overlap;
|
||||||
}
|
}
|
||||||
|
|
||||||
const embeddingConfig = await getEmbeddingConfig(localStorage.token);
|
await setEmbeddingConfig();
|
||||||
|
|
||||||
if (embeddingConfig) {
|
|
||||||
embeddingEngine = embeddingConfig.embedding_engine;
|
|
||||||
embeddingModel = embeddingConfig.embedding_model;
|
|
||||||
}
|
|
||||||
|
|
||||||
querySettings = await getQuerySettings(localStorage.token);
|
querySettings = await getQuerySettings(localStorage.token);
|
||||||
});
|
});
|
||||||
@ -146,15 +172,38 @@
|
|||||||
class="dark:bg-gray-900 w-fit pr-8 rounded px-2 p-1 text-xs bg-transparent outline-none text-right"
|
class="dark:bg-gray-900 w-fit pr-8 rounded px-2 p-1 text-xs bg-transparent outline-none text-right"
|
||||||
bind:value={embeddingEngine}
|
bind:value={embeddingEngine}
|
||||||
placeholder="Select an embedding engine"
|
placeholder="Select an embedding engine"
|
||||||
on:change={() => {
|
on:change={(e) => {
|
||||||
|
if (e.target.value === 'ollama') {
|
||||||
embeddingModel = '';
|
embeddingModel = '';
|
||||||
|
} else if (e.target.value === 'openai') {
|
||||||
|
embeddingModel = 'text-embedding-3-small';
|
||||||
|
}
|
||||||
}}
|
}}
|
||||||
>
|
>
|
||||||
<option value="">{$i18n.t('Default (SentenceTransformer)')}</option>
|
<option value="">{$i18n.t('Default (SentenceTransformer)')}</option>
|
||||||
<option value="ollama">{$i18n.t('Ollama')}</option>
|
<option value="ollama">{$i18n.t('Ollama')}</option>
|
||||||
|
<option value="openai">{$i18n.t('OpenAI')}</option>
|
||||||
</select>
|
</select>
|
||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
|
{#if embeddingEngine === 'openai'}
|
||||||
|
<div class="mt-1 flex gap-2">
|
||||||
|
<input
|
||||||
|
class="w-full rounded-lg py-2 px-4 text-sm dark:text-gray-300 dark:bg-gray-850 outline-none"
|
||||||
|
placeholder={$i18n.t('API Base URL')}
|
||||||
|
bind:value={openAIUrl}
|
||||||
|
required
|
||||||
|
/>
|
||||||
|
|
||||||
|
<input
|
||||||
|
class="w-full rounded-lg py-2 px-4 text-sm dark:text-gray-300 dark:bg-gray-850 outline-none"
|
||||||
|
placeholder={$i18n.t('API Key')}
|
||||||
|
bind:value={openAIKey}
|
||||||
|
required
|
||||||
|
/>
|
||||||
|
</div>
|
||||||
|
{/if}
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
<div class="space-y-2">
|
<div class="space-y-2">
|
||||||
|
Loading…
Reference in New Issue
Block a user