mirror of
https://github.com/open-webui/open-webui
synced 2025-01-19 01:06:45 +00:00
storing vectordb in project cache folder + device types
This commit is contained in:
parent
0cb0358485
commit
acf999013b
12
Dockerfile
12
Dockerfile
@ -30,15 +30,21 @@ ENV WEBUI_SECRET_KEY ""
|
||||
ENV SCARF_NO_ANALYTICS true
|
||||
ENV DO_NOT_TRACK true
|
||||
|
||||
######## Preloaded models ########
|
||||
# whisper TTS Settings
|
||||
ENV WHISPER_MODEL="base"
|
||||
ENV WHISPER_MODEL_DIR="/app/backend/data/cache/whisper/models"
|
||||
|
||||
# RAG Embedding Model Settings
|
||||
# any sentence transformer model; models to use can be found at https://huggingface.co/models?library=sentence-transformers
|
||||
# Leaderboard: https://huggingface.co/spaces/mteb/leaderboard
|
||||
# for better persormance and multilangauge support use "intfloat/multilingual-e5-large"
|
||||
# for better persormance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB)
|
||||
# IMPORTANT: If you change the default model (all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them.
|
||||
ENV RAG_EMBEDDING_MODEL="all-MiniLM-L6-v2"
|
||||
ENV SENTENCE_TRANSFORMERS_HOME="/app/backend/data/cache/embedding/models"
|
||||
# device type for whisper tts and ebbeding models - "cpu" (default), "cuda" (nvidia gpu and CUDA required) or "mps" (apple silicon) - choosing this right can lead to better performance
|
||||
ENV RAG_EMBEDDING_MODEL_DEVICE_TYPE="cpu"
|
||||
######## Preloaded models ########
|
||||
|
||||
WORKDIR /app/backend
|
||||
|
||||
@ -55,9 +61,9 @@ RUN apt-get update \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# preload embedding model
|
||||
RUN python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'])"
|
||||
RUN python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device=os.environ['RAG_EMBEDDING_MODEL_DEVICE_TYPE'])"
|
||||
# preload tts model
|
||||
RUN python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"
|
||||
RUN python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='auto', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"
|
||||
|
||||
|
||||
# copy embedding weight from build
|
||||
|
@ -56,7 +56,7 @@ def transcribe(
|
||||
|
||||
model = WhisperModel(
|
||||
WHISPER_MODEL,
|
||||
device="cpu",
|
||||
device="auto",
|
||||
compute_type="int8",
|
||||
download_root=WHISPER_MODEL_DIR,
|
||||
)
|
||||
|
@ -13,6 +13,7 @@ import os, shutil
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from chromadb.utils import embedding_functions
|
||||
|
||||
from langchain_community.document_loaders import (
|
||||
@ -52,6 +53,7 @@ from config import (
|
||||
UPLOAD_DIR,
|
||||
DOCS_DIR,
|
||||
RAG_EMBEDDING_MODEL,
|
||||
RAG_EMBEDDING_MODEL_DEVICE_TYPE,
|
||||
CHROMA_CLIENT,
|
||||
CHUNK_SIZE,
|
||||
CHUNK_OVERLAP,
|
||||
@ -60,10 +62,18 @@ from config import (
|
||||
|
||||
from constants import ERROR_MESSAGES
|
||||
|
||||
#
|
||||
#if RAG_EMBEDDING_MODEL:
|
||||
# sentence_transformer_ef = SentenceTransformer(
|
||||
# model_name_or_path=RAG_EMBEDDING_MODEL,
|
||||
# cache_folder=RAG_EMBEDDING_MODEL_DIR,
|
||||
# device=RAG_EMBEDDING_MODEL_DEVICE_TYPE,
|
||||
# )
|
||||
|
||||
if RAG_EMBEDDING_MODEL:
|
||||
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
|
||||
model_name=RAG_EMBEDDING_MODEL
|
||||
model_name=RAG_EMBEDDING_MODEL,
|
||||
device=RAG_EMBEDDING_MODEL_DEVICE_TYPE,
|
||||
)
|
||||
|
||||
app = FastAPI()
|
||||
|
@ -138,6 +138,9 @@ if WEBUI_AUTH and WEBUI_SECRET_KEY == "":
|
||||
CHROMA_DATA_PATH = f"{DATA_DIR}/vector_db"
|
||||
# this uses the model defined in the Dockerfile ENV variable. If you dont use docker or docker based deployments such as k8s, the default embedding model will be used (all-MiniLM-L6-v2)
|
||||
RAG_EMBEDDING_MODEL = os.environ.get("RAG_EMBEDDING_MODEL", "")
|
||||
|
||||
# device type ebbeding models - "cpu" (default), "cuda" (nvidia gpu required) or "mps" (apple silicon) - choosing this right can lead to better performance
|
||||
RAG_EMBEDDING_MODEL_DEVICE_TYPE = os.environ.get("RAG_EMBEDDING_MODEL_DEVICE_TYPE", "")
|
||||
CHROMA_CLIENT = chromadb.PersistentClient(
|
||||
path=CHROMA_DATA_PATH,
|
||||
settings=Settings(allow_reset=True, anonymized_telemetry=False),
|
||||
|
Loading…
Reference in New Issue
Block a user