mirror of
https://github.com/open-webui/open-webui
synced 2025-01-19 01:06:45 +00:00
storing vectordb in project cache folder + device types
This commit is contained in:
parent
0cb0358485
commit
acf999013b
12
Dockerfile
12
Dockerfile
@ -30,15 +30,21 @@ ENV WEBUI_SECRET_KEY ""
|
|||||||
ENV SCARF_NO_ANALYTICS true
|
ENV SCARF_NO_ANALYTICS true
|
||||||
ENV DO_NOT_TRACK true
|
ENV DO_NOT_TRACK true
|
||||||
|
|
||||||
|
######## Preloaded models ########
|
||||||
# whisper TTS Settings
|
# whisper TTS Settings
|
||||||
ENV WHISPER_MODEL="base"
|
ENV WHISPER_MODEL="base"
|
||||||
ENV WHISPER_MODEL_DIR="/app/backend/data/cache/whisper/models"
|
ENV WHISPER_MODEL_DIR="/app/backend/data/cache/whisper/models"
|
||||||
|
|
||||||
|
# RAG Embedding Model Settings
|
||||||
# any sentence transformer model; models to use can be found at https://huggingface.co/models?library=sentence-transformers
|
# any sentence transformer model; models to use can be found at https://huggingface.co/models?library=sentence-transformers
|
||||||
# Leaderboard: https://huggingface.co/spaces/mteb/leaderboard
|
# Leaderboard: https://huggingface.co/spaces/mteb/leaderboard
|
||||||
# for better persormance and multilangauge support use "intfloat/multilingual-e5-large"
|
# for better persormance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB)
|
||||||
# IMPORTANT: If you change the default model (all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them.
|
# IMPORTANT: If you change the default model (all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them.
|
||||||
ENV RAG_EMBEDDING_MODEL="all-MiniLM-L6-v2"
|
ENV RAG_EMBEDDING_MODEL="all-MiniLM-L6-v2"
|
||||||
|
ENV SENTENCE_TRANSFORMERS_HOME="/app/backend/data/cache/embedding/models"
|
||||||
|
# device type for whisper tts and ebbeding models - "cpu" (default), "cuda" (nvidia gpu and CUDA required) or "mps" (apple silicon) - choosing this right can lead to better performance
|
||||||
|
ENV RAG_EMBEDDING_MODEL_DEVICE_TYPE="cpu"
|
||||||
|
######## Preloaded models ########
|
||||||
|
|
||||||
WORKDIR /app/backend
|
WORKDIR /app/backend
|
||||||
|
|
||||||
@ -55,9 +61,9 @@ RUN apt-get update \
|
|||||||
&& rm -rf /var/lib/apt/lists/*
|
&& rm -rf /var/lib/apt/lists/*
|
||||||
|
|
||||||
# preload embedding model
|
# preload embedding model
|
||||||
RUN python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'])"
|
RUN python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device=os.environ['RAG_EMBEDDING_MODEL_DEVICE_TYPE'])"
|
||||||
# preload tts model
|
# preload tts model
|
||||||
RUN python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"
|
RUN python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='auto', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"
|
||||||
|
|
||||||
|
|
||||||
# copy embedding weight from build
|
# copy embedding weight from build
|
||||||
|
@ -56,7 +56,7 @@ def transcribe(
|
|||||||
|
|
||||||
model = WhisperModel(
|
model = WhisperModel(
|
||||||
WHISPER_MODEL,
|
WHISPER_MODEL,
|
||||||
device="cpu",
|
device="auto",
|
||||||
compute_type="int8",
|
compute_type="int8",
|
||||||
download_root=WHISPER_MODEL_DIR,
|
download_root=WHISPER_MODEL_DIR,
|
||||||
)
|
)
|
||||||
|
@ -13,6 +13,7 @@ import os, shutil
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import List
|
from typing import List
|
||||||
|
|
||||||
|
from sentence_transformers import SentenceTransformer
|
||||||
from chromadb.utils import embedding_functions
|
from chromadb.utils import embedding_functions
|
||||||
|
|
||||||
from langchain_community.document_loaders import (
|
from langchain_community.document_loaders import (
|
||||||
@ -52,6 +53,7 @@ from config import (
|
|||||||
UPLOAD_DIR,
|
UPLOAD_DIR,
|
||||||
DOCS_DIR,
|
DOCS_DIR,
|
||||||
RAG_EMBEDDING_MODEL,
|
RAG_EMBEDDING_MODEL,
|
||||||
|
RAG_EMBEDDING_MODEL_DEVICE_TYPE,
|
||||||
CHROMA_CLIENT,
|
CHROMA_CLIENT,
|
||||||
CHUNK_SIZE,
|
CHUNK_SIZE,
|
||||||
CHUNK_OVERLAP,
|
CHUNK_OVERLAP,
|
||||||
@ -60,10 +62,18 @@ from config import (
|
|||||||
|
|
||||||
from constants import ERROR_MESSAGES
|
from constants import ERROR_MESSAGES
|
||||||
|
|
||||||
|
#
|
||||||
|
#if RAG_EMBEDDING_MODEL:
|
||||||
|
# sentence_transformer_ef = SentenceTransformer(
|
||||||
|
# model_name_or_path=RAG_EMBEDDING_MODEL,
|
||||||
|
# cache_folder=RAG_EMBEDDING_MODEL_DIR,
|
||||||
|
# device=RAG_EMBEDDING_MODEL_DEVICE_TYPE,
|
||||||
|
# )
|
||||||
|
|
||||||
if RAG_EMBEDDING_MODEL:
|
if RAG_EMBEDDING_MODEL:
|
||||||
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
|
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
|
||||||
model_name=RAG_EMBEDDING_MODEL
|
model_name=RAG_EMBEDDING_MODEL,
|
||||||
|
device=RAG_EMBEDDING_MODEL_DEVICE_TYPE,
|
||||||
)
|
)
|
||||||
|
|
||||||
app = FastAPI()
|
app = FastAPI()
|
||||||
|
@ -138,6 +138,9 @@ if WEBUI_AUTH and WEBUI_SECRET_KEY == "":
|
|||||||
CHROMA_DATA_PATH = f"{DATA_DIR}/vector_db"
|
CHROMA_DATA_PATH = f"{DATA_DIR}/vector_db"
|
||||||
# this uses the model defined in the Dockerfile ENV variable. If you dont use docker or docker based deployments such as k8s, the default embedding model will be used (all-MiniLM-L6-v2)
|
# this uses the model defined in the Dockerfile ENV variable. If you dont use docker or docker based deployments such as k8s, the default embedding model will be used (all-MiniLM-L6-v2)
|
||||||
RAG_EMBEDDING_MODEL = os.environ.get("RAG_EMBEDDING_MODEL", "")
|
RAG_EMBEDDING_MODEL = os.environ.get("RAG_EMBEDDING_MODEL", "")
|
||||||
|
|
||||||
|
# device type ebbeding models - "cpu" (default), "cuda" (nvidia gpu required) or "mps" (apple silicon) - choosing this right can lead to better performance
|
||||||
|
RAG_EMBEDDING_MODEL_DEVICE_TYPE = os.environ.get("RAG_EMBEDDING_MODEL_DEVICE_TYPE", "")
|
||||||
CHROMA_CLIENT = chromadb.PersistentClient(
|
CHROMA_CLIENT = chromadb.PersistentClient(
|
||||||
path=CHROMA_DATA_PATH,
|
path=CHROMA_DATA_PATH,
|
||||||
settings=Settings(allow_reset=True, anonymized_telemetry=False),
|
settings=Settings(allow_reset=True, anonymized_telemetry=False),
|
||||||
|
Loading…
Reference in New Issue
Block a user