diff --git a/Dockerfile b/Dockerfile index a7692fdb5..03dccefe3 100644 --- a/Dockerfile +++ b/Dockerfile @@ -41,9 +41,11 @@ ENV WHISPER_MODEL_DIR="/app/backend/data/cache/whisper/models" # for better persormance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB) # IMPORTANT: If you change the default model (all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them. ENV RAG_EMBEDDING_MODEL="all-MiniLM-L6-v2" -ENV SENTENCE_TRANSFORMERS_HOME="/app/backend/data/cache/embedding/models" # device type for whisper tts and ebbeding models - "cpu" (default), "cuda" (nvidia gpu and CUDA required) or "mps" (apple silicon) - choosing this right can lead to better performance ENV RAG_EMBEDDING_MODEL_DEVICE_TYPE="cpu" +ENV RAG_EMBEDDING_MODEL_DIR="/app/backend/data/cache/embedding/models" +ENV SENTENCE_TRANSFORMERS_HOME $RAG_EMBEDDING_MODEL_DIR + ######## Preloaded models ######## WORKDIR /app/backend @@ -65,7 +67,6 @@ RUN python -c "import os; from chromadb.utils import embedding_functions; senten # preload tts model RUN python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='auto', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])" - # copy embedding weight from build RUN mkdir -p /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2 COPY --from=build /app/onnx /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2/onnx diff --git a/backend/config.py b/backend/config.py index 175b228e9..b80bc0816 100644 --- a/backend/config.py +++ b/backend/config.py @@ -137,10 +137,11 @@ if WEBUI_AUTH and WEBUI_SECRET_KEY == "": CHROMA_DATA_PATH = f"{DATA_DIR}/vector_db" # this uses the model defined in the Dockerfile ENV variable. If you dont use docker or docker based deployments such as k8s, the default embedding model will be used (all-MiniLM-L6-v2) -RAG_EMBEDDING_MODEL = os.environ.get("RAG_EMBEDDING_MODEL", "") - +RAG_EMBEDDING_MODEL = os.environ.get("RAG_EMBEDDING_MODEL", "all-MiniLM-L6-v2") # device type ebbeding models - "cpu" (default), "cuda" (nvidia gpu required) or "mps" (apple silicon) - choosing this right can lead to better performance -RAG_EMBEDDING_MODEL_DEVICE_TYPE = os.environ.get("RAG_EMBEDDING_MODEL_DEVICE_TYPE", "") +RAG_EMBEDDING_MODEL_DEVICE_TYPE = os.environ.get( + "RAG_EMBEDDING_MODEL_DEVICE_TYPE", "cpu" +) CHROMA_CLIENT = chromadb.PersistentClient( path=CHROMA_DATA_PATH, settings=Settings(allow_reset=True, anonymized_telemetry=False),