mirror of
https://github.com/open-webui/open-webui
synced 2025-01-18 08:40:58 +00:00
revert: original rag pipeline
This commit is contained in:
parent
7d88689f51
commit
984dbf13ab
@ -18,6 +18,9 @@ from langchain.retrievers import (
|
||||
EnsembleRetriever,
|
||||
)
|
||||
|
||||
from sentence_transformers import CrossEncoder
|
||||
|
||||
from typing import Optional
|
||||
from config import SRC_LOG_LEVELS, CHROMA_CLIENT
|
||||
|
||||
|
||||
@ -28,50 +31,64 @@ log.setLevel(SRC_LOG_LEVELS["RAG"])
|
||||
def query_embeddings_doc(
|
||||
collection_name: str,
|
||||
query: str,
|
||||
k: int,
|
||||
r: float,
|
||||
embeddings_function,
|
||||
reranking_function,
|
||||
k: int,
|
||||
reranking_function: Optional[CrossEncoder] = None,
|
||||
r: Optional[float] = None,
|
||||
):
|
||||
try:
|
||||
# if you use docker use the model from the environment variable
|
||||
collection = CHROMA_CLIENT.get_collection(name=collection_name)
|
||||
|
||||
documents = collection.get() # get all documents
|
||||
bm25_retriever = BM25Retriever.from_texts(
|
||||
texts=documents.get("documents"),
|
||||
metadatas=documents.get("metadatas"),
|
||||
)
|
||||
bm25_retriever.k = k
|
||||
if reranking_function:
|
||||
# if you use docker use the model from the environment variable
|
||||
collection = CHROMA_CLIENT.get_collection(name=collection_name)
|
||||
|
||||
chroma_retriever = ChromaRetriever(
|
||||
collection=collection,
|
||||
embeddings_function=embeddings_function,
|
||||
top_n=k,
|
||||
)
|
||||
documents = collection.get() # get all documents
|
||||
bm25_retriever = BM25Retriever.from_texts(
|
||||
texts=documents.get("documents"),
|
||||
metadatas=documents.get("metadatas"),
|
||||
)
|
||||
bm25_retriever.k = k
|
||||
|
||||
ensemble_retriever = EnsembleRetriever(
|
||||
retrievers=[bm25_retriever, chroma_retriever], weights=[0.5, 0.5]
|
||||
)
|
||||
chroma_retriever = ChromaRetriever(
|
||||
collection=collection,
|
||||
embeddings_function=embeddings_function,
|
||||
top_n=k,
|
||||
)
|
||||
|
||||
compressor = RerankCompressor(
|
||||
embeddings_function=embeddings_function,
|
||||
reranking_function=reranking_function,
|
||||
r_score=r,
|
||||
top_n=k,
|
||||
)
|
||||
ensemble_retriever = EnsembleRetriever(
|
||||
retrievers=[bm25_retriever, chroma_retriever], weights=[0.5, 0.5]
|
||||
)
|
||||
|
||||
compression_retriever = ContextualCompressionRetriever(
|
||||
base_compressor=compressor, base_retriever=ensemble_retriever
|
||||
)
|
||||
compressor = RerankCompressor(
|
||||
embeddings_function=embeddings_function,
|
||||
reranking_function=reranking_function,
|
||||
r_score=r,
|
||||
top_n=k,
|
||||
)
|
||||
|
||||
result = compression_retriever.invoke(query)
|
||||
result = {
|
||||
"distances": [[d.metadata.get("score") for d in result]],
|
||||
"documents": [[d.page_content for d in result]],
|
||||
"metadatas": [[d.metadata for d in result]],
|
||||
}
|
||||
compression_retriever = ContextualCompressionRetriever(
|
||||
base_compressor=compressor, base_retriever=ensemble_retriever
|
||||
)
|
||||
|
||||
result = compression_retriever.invoke(query)
|
||||
result = {
|
||||
"distances": [[d.metadata.get("score") for d in result]],
|
||||
"documents": [[d.page_content for d in result]],
|
||||
"metadatas": [[d.metadata for d in result]],
|
||||
}
|
||||
else:
|
||||
# if you use docker use the model from the environment variable
|
||||
query_embeddings = embeddings_function(query)
|
||||
|
||||
log.info(f"query_embeddings_doc {query_embeddings}")
|
||||
collection = CHROMA_CLIENT.get_collection(name=collection_name)
|
||||
|
||||
result = collection.query(
|
||||
query_embeddings=[query_embeddings],
|
||||
n_results=k,
|
||||
)
|
||||
|
||||
log.info(f"query_embeddings_doc:result {result}")
|
||||
return result
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
Loading…
Reference in New Issue
Block a user