mirror of
https://github.com/open-webui/open-webui
synced 2024-11-16 13:40:55 +00:00
refac: rag routes
This commit is contained in:
parent
30503b5958
commit
7e5e2c42c9
@ -44,6 +44,8 @@ from apps.web.models.documents import (
|
|||||||
DocumentResponse,
|
DocumentResponse,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
from apps.rag.utils import query_doc, query_collection
|
||||||
|
|
||||||
from utils.misc import (
|
from utils.misc import (
|
||||||
calculate_sha256,
|
calculate_sha256,
|
||||||
calculate_sha256_string,
|
calculate_sha256_string,
|
||||||
@ -248,21 +250,18 @@ class QueryDocForm(BaseModel):
|
|||||||
|
|
||||||
|
|
||||||
@app.post("/query/doc")
|
@app.post("/query/doc")
|
||||||
def query_doc(
|
def query_doc_handler(
|
||||||
form_data: QueryDocForm,
|
form_data: QueryDocForm,
|
||||||
user=Depends(get_current_user),
|
user=Depends(get_current_user),
|
||||||
):
|
):
|
||||||
|
|
||||||
try:
|
try:
|
||||||
# if you use docker use the model from the environment variable
|
return query_doc(
|
||||||
collection = CHROMA_CLIENT.get_collection(
|
collection_name=form_data.collection_name,
|
||||||
name=form_data.collection_name,
|
query=form_data.query,
|
||||||
|
k=form_data.k if form_data.k else app.state.TOP_K,
|
||||||
embedding_function=app.state.sentence_transformer_ef,
|
embedding_function=app.state.sentence_transformer_ef,
|
||||||
)
|
)
|
||||||
result = collection.query(
|
|
||||||
query_texts=[form_data.query],
|
|
||||||
n_results=form_data.k if form_data.k else app.state.TOP_K,
|
|
||||||
)
|
|
||||||
return result
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(e)
|
print(e)
|
||||||
raise HTTPException(
|
raise HTTPException(
|
||||||
@ -277,76 +276,16 @@ class QueryCollectionsForm(BaseModel):
|
|||||||
k: Optional[int] = None
|
k: Optional[int] = None
|
||||||
|
|
||||||
|
|
||||||
def merge_and_sort_query_results(query_results, k):
|
|
||||||
# Initialize lists to store combined data
|
|
||||||
combined_ids = []
|
|
||||||
combined_distances = []
|
|
||||||
combined_metadatas = []
|
|
||||||
combined_documents = []
|
|
||||||
|
|
||||||
# Combine data from each dictionary
|
|
||||||
for data in query_results:
|
|
||||||
combined_ids.extend(data["ids"][0])
|
|
||||||
combined_distances.extend(data["distances"][0])
|
|
||||||
combined_metadatas.extend(data["metadatas"][0])
|
|
||||||
combined_documents.extend(data["documents"][0])
|
|
||||||
|
|
||||||
# Create a list of tuples (distance, id, metadata, document)
|
|
||||||
combined = list(
|
|
||||||
zip(combined_distances, combined_ids, combined_metadatas, combined_documents)
|
|
||||||
)
|
|
||||||
|
|
||||||
# Sort the list based on distances
|
|
||||||
combined.sort(key=lambda x: x[0])
|
|
||||||
|
|
||||||
# Unzip the sorted list
|
|
||||||
sorted_distances, sorted_ids, sorted_metadatas, sorted_documents = zip(*combined)
|
|
||||||
|
|
||||||
# Slicing the lists to include only k elements
|
|
||||||
sorted_distances = list(sorted_distances)[:k]
|
|
||||||
sorted_ids = list(sorted_ids)[:k]
|
|
||||||
sorted_metadatas = list(sorted_metadatas)[:k]
|
|
||||||
sorted_documents = list(sorted_documents)[:k]
|
|
||||||
|
|
||||||
# Create the output dictionary
|
|
||||||
merged_query_results = {
|
|
||||||
"ids": [sorted_ids],
|
|
||||||
"distances": [sorted_distances],
|
|
||||||
"metadatas": [sorted_metadatas],
|
|
||||||
"documents": [sorted_documents],
|
|
||||||
"embeddings": None,
|
|
||||||
"uris": None,
|
|
||||||
"data": None,
|
|
||||||
}
|
|
||||||
|
|
||||||
return merged_query_results
|
|
||||||
|
|
||||||
|
|
||||||
@app.post("/query/collection")
|
@app.post("/query/collection")
|
||||||
def query_collection(
|
def query_collection_handler(
|
||||||
form_data: QueryCollectionsForm,
|
form_data: QueryCollectionsForm,
|
||||||
user=Depends(get_current_user),
|
user=Depends(get_current_user),
|
||||||
):
|
):
|
||||||
results = []
|
return query_collection(
|
||||||
|
collection_names=form_data.collection_names,
|
||||||
for collection_name in form_data.collection_names:
|
query=form_data.query,
|
||||||
try:
|
k=form_data.k if form_data.k else app.state.TOP_K,
|
||||||
# if you use docker use the model from the environment variable
|
embedding_function=app.state.sentence_transformer_ef,
|
||||||
collection = CHROMA_CLIENT.get_collection(
|
|
||||||
name=collection_name,
|
|
||||||
embedding_function=app.state.sentence_transformer_ef,
|
|
||||||
)
|
|
||||||
|
|
||||||
result = collection.query(
|
|
||||||
query_texts=[form_data.query],
|
|
||||||
n_results=form_data.k if form_data.k else app.state.TOP_K,
|
|
||||||
)
|
|
||||||
results.append(result)
|
|
||||||
except:
|
|
||||||
pass
|
|
||||||
|
|
||||||
return merge_and_sort_query_results(
|
|
||||||
results, form_data.k if form_data.k else app.state.TOP_K
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
89
backend/apps/rag/utils.py
Normal file
89
backend/apps/rag/utils.py
Normal file
@ -0,0 +1,89 @@
|
|||||||
|
from typing import List
|
||||||
|
|
||||||
|
from config import CHROMA_CLIENT
|
||||||
|
|
||||||
|
|
||||||
|
def query_doc(collection_name: str, query: str, k: int, embedding_function):
|
||||||
|
try:
|
||||||
|
# if you use docker use the model from the environment variable
|
||||||
|
collection = CHROMA_CLIENT.get_collection(
|
||||||
|
name=collection_name,
|
||||||
|
embedding_function=embedding_function,
|
||||||
|
)
|
||||||
|
result = collection.query(
|
||||||
|
query_texts=[query],
|
||||||
|
n_results=k,
|
||||||
|
)
|
||||||
|
return result
|
||||||
|
except Exception as e:
|
||||||
|
raise e
|
||||||
|
|
||||||
|
|
||||||
|
def merge_and_sort_query_results(query_results, k):
|
||||||
|
# Initialize lists to store combined data
|
||||||
|
combined_ids = []
|
||||||
|
combined_distances = []
|
||||||
|
combined_metadatas = []
|
||||||
|
combined_documents = []
|
||||||
|
|
||||||
|
# Combine data from each dictionary
|
||||||
|
for data in query_results:
|
||||||
|
combined_ids.extend(data["ids"][0])
|
||||||
|
combined_distances.extend(data["distances"][0])
|
||||||
|
combined_metadatas.extend(data["metadatas"][0])
|
||||||
|
combined_documents.extend(data["documents"][0])
|
||||||
|
|
||||||
|
# Create a list of tuples (distance, id, metadata, document)
|
||||||
|
combined = list(
|
||||||
|
zip(combined_distances, combined_ids, combined_metadatas, combined_documents)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Sort the list based on distances
|
||||||
|
combined.sort(key=lambda x: x[0])
|
||||||
|
|
||||||
|
# Unzip the sorted list
|
||||||
|
sorted_distances, sorted_ids, sorted_metadatas, sorted_documents = zip(*combined)
|
||||||
|
|
||||||
|
# Slicing the lists to include only k elements
|
||||||
|
sorted_distances = list(sorted_distances)[:k]
|
||||||
|
sorted_ids = list(sorted_ids)[:k]
|
||||||
|
sorted_metadatas = list(sorted_metadatas)[:k]
|
||||||
|
sorted_documents = list(sorted_documents)[:k]
|
||||||
|
|
||||||
|
# Create the output dictionary
|
||||||
|
merged_query_results = {
|
||||||
|
"ids": [sorted_ids],
|
||||||
|
"distances": [sorted_distances],
|
||||||
|
"metadatas": [sorted_metadatas],
|
||||||
|
"documents": [sorted_documents],
|
||||||
|
"embeddings": None,
|
||||||
|
"uris": None,
|
||||||
|
"data": None,
|
||||||
|
}
|
||||||
|
|
||||||
|
return merged_query_results
|
||||||
|
|
||||||
|
|
||||||
|
def query_collection(
|
||||||
|
collection_names: List[str], query: str, k: int, embedding_function
|
||||||
|
):
|
||||||
|
|
||||||
|
results = []
|
||||||
|
|
||||||
|
for collection_name in collection_names:
|
||||||
|
try:
|
||||||
|
# if you use docker use the model from the environment variable
|
||||||
|
collection = CHROMA_CLIENT.get_collection(
|
||||||
|
name=collection_name,
|
||||||
|
embedding_function=embedding_function,
|
||||||
|
)
|
||||||
|
|
||||||
|
result = collection.query(
|
||||||
|
query_texts=[query],
|
||||||
|
n_results=k,
|
||||||
|
)
|
||||||
|
results.append(result)
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
|
return merge_and_sort_query_results(results, k)
|
Loading…
Reference in New Issue
Block a user