diff --git a/backend/open_webui/retrieval/utils.py b/backend/open_webui/retrieval/utils.py index a3974f15b..8b187dbe0 100644 --- a/backend/open_webui/retrieval/utils.py +++ b/backend/open_webui/retrieval/utils.py @@ -174,9 +174,7 @@ def merge_get_results(get_results: list[dict]) -> dict: return result -def merge_and_sort_query_results( - query_results: list[dict], k: int -) -> dict: +def merge_and_sort_query_results(query_results: list[dict], k: int) -> dict: # Initialize lists to store combined data combined = dict() # To store documents with unique document hashes diff --git a/backend/open_webui/retrieval/vector/dbs/chroma.py b/backend/open_webui/retrieval/vector/dbs/chroma.py index 3543cd545..fc91f14a5 100755 --- a/backend/open_webui/retrieval/vector/dbs/chroma.py +++ b/backend/open_webui/retrieval/vector/dbs/chroma.py @@ -79,7 +79,7 @@ class ChromaClient: # https://docs.trychroma.com/docs/collections/configure cosine equation distances: list = result["distances"][0] distances = [2 - dist for dist in distances] - distances = [[dist/2 for dist in distances]] + distances = [[dist / 2 for dist in distances]] return SearchResult( **{ diff --git a/backend/open_webui/retrieval/vector/dbs/milvus.py b/backend/open_webui/retrieval/vector/dbs/milvus.py index 4d0da57ac..26b4dd5ed 100644 --- a/backend/open_webui/retrieval/vector/dbs/milvus.py +++ b/backend/open_webui/retrieval/vector/dbs/milvus.py @@ -66,7 +66,7 @@ class MilvusClient: _ids.append(item.get("id")) # normalize milvus score from [-1, 1] to [0, 1] range # https://milvus.io/docs/de/metric.md - _dist = (item.get("distance") + 1.0)/2.0 + _dist = (item.get("distance") + 1.0) / 2.0 _distances.append(_dist) _documents.append(item.get("entity", {}).get("data", {}).get("text")) _metadatas.append(item.get("entity", {}).get("metadata")) diff --git a/backend/open_webui/retrieval/vector/dbs/pgvector.py b/backend/open_webui/retrieval/vector/dbs/pgvector.py index 0ddf48d1e..c38dbb036 100644 --- a/backend/open_webui/retrieval/vector/dbs/pgvector.py +++ b/backend/open_webui/retrieval/vector/dbs/pgvector.py @@ -280,7 +280,7 @@ class PgvectorClient: ids[qid].append(row.id) # normalize and re-orders pgvec distance from [2, 0] to [0, 1] score range # https://github.com/pgvector/pgvector?tab=readme-ov-file#querying - distances[qid].append((2.0 - row.distance)/2.0) + distances[qid].append((2.0 - row.distance) / 2.0) documents[qid].append(row.text) metadatas[qid].append(row.vmetadata) diff --git a/backend/open_webui/retrieval/vector/dbs/qdrant.py b/backend/open_webui/retrieval/vector/dbs/qdrant.py index 070bf3de5..be0df6c6a 100644 --- a/backend/open_webui/retrieval/vector/dbs/qdrant.py +++ b/backend/open_webui/retrieval/vector/dbs/qdrant.py @@ -100,7 +100,7 @@ class QdrantClient: documents=get_result.documents, metadatas=get_result.metadatas, # qdrant distance is [-1, 1], normalize to [0, 1] - distances=[[(point.score + 1.0)/2.0 for point in query_response.points]], + distances=[[(point.score + 1.0) / 2.0 for point in query_response.points]], ) def query(self, collection_name: str, filter: dict, limit: Optional[int] = None):