Merge pull request #1654 from open-webui/dev

0.1.121
This commit is contained in:
Timothy Jaeryang Baek 2024-04-24 12:31:01 -07:00 committed by GitHub
commit 748cb7d446
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
32 changed files with 1014 additions and 620 deletions

View File

@ -5,6 +5,19 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.1.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [0.1.121] - 2024-04-24
### Fixed
- **🔧 Translation Issues**: Addressed various translation discrepancies.
- **🔒 LiteLLM Security Fix**: Updated LiteLLM version to resolve a security vulnerability.
- **🖥️ HTML Tag Display**: Rectified the issue where the '< br >' tag wasn't displaying correctly.
- **🔗 WebSocket Connection**: Resolved the failure of WebSocket connection under HTTPS security for ComfyUI server.
- **📜 FileReader Optimization**: Implemented FileReader initialization per image in multi-file drag & drop to ensure reusability.
- **🏷️ Tag Display**: Corrected tag display inconsistencies.
- **📦 Archived Chat Styling**: Fixed styling issues in archived chat.
- **🔖 Safari Copy Button Bug**: Addressed the bug where the copy button failed to copy links in Safari.
## [0.1.120] - 2024-04-20
### Added

View File

@ -8,8 +8,8 @@ ARG USE_CUDA_VER=cu121
# any sentence transformer model; models to use can be found at https://huggingface.co/models?library=sentence-transformers
# Leaderboard: https://huggingface.co/spaces/mteb/leaderboard
# for better performance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB)
# IMPORTANT: If you change the default model (all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them.
ARG USE_EMBEDDING_MODEL=all-MiniLM-L6-v2
# IMPORTANT: If you change the default model (sentence-transformers/all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them.
ARG USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2
######## WebUI frontend ########
FROM --platform=$BUILDPLATFORM node:21-alpine3.19 as build
@ -98,13 +98,13 @@ RUN pip3 install uv && \
# If you use CUDA the whisper and embedding model will be downloaded on first use
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/$USE_CUDA_DOCKER_VER --no-cache-dir && \
uv pip install --system -r requirements.txt --no-cache-dir && \
python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])" && \
python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device='cpu')"; \
python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && \
python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; \
else \
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && \
uv pip install --system -r requirements.txt --no-cache-dir && \
python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])" && \
python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device='cpu')"; \
python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && \
python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; \
fi

View File

@ -35,8 +35,8 @@ from config import (
ENABLE_IMAGE_GENERATION,
AUTOMATIC1111_BASE_URL,
COMFYUI_BASE_URL,
OPENAI_API_BASE_URL,
OPENAI_API_KEY,
IMAGES_OPENAI_API_BASE_URL,
IMAGES_OPENAI_API_KEY,
)
@ -58,8 +58,8 @@ app.add_middleware(
app.state.ENGINE = ""
app.state.ENABLED = ENABLE_IMAGE_GENERATION
app.state.OPENAI_API_BASE_URL = OPENAI_API_BASE_URL
app.state.OPENAI_API_KEY = OPENAI_API_KEY
app.state.OPENAI_API_BASE_URL = IMAGES_OPENAI_API_BASE_URL
app.state.OPENAI_API_KEY = IMAGES_OPENAI_API_KEY
app.state.MODEL = ""
@ -135,27 +135,33 @@ async def update_engine_url(
}
class OpenAIKeyUpdateForm(BaseModel):
class OpenAIConfigUpdateForm(BaseModel):
url: str
key: str
@app.get("/key")
async def get_openai_key(user=Depends(get_admin_user)):
return {"OPENAI_API_KEY": app.state.OPENAI_API_KEY}
@app.get("/openai/config")
async def get_openai_config(user=Depends(get_admin_user)):
return {
"OPENAI_API_BASE_URL": app.state.OPENAI_API_BASE_URL,
"OPENAI_API_KEY": app.state.OPENAI_API_KEY,
}
@app.post("/key/update")
async def update_openai_key(
form_data: OpenAIKeyUpdateForm, user=Depends(get_admin_user)
@app.post("/openai/config/update")
async def update_openai_config(
form_data: OpenAIConfigUpdateForm, user=Depends(get_admin_user)
):
if form_data.key == "":
raise HTTPException(status_code=400, detail=ERROR_MESSAGES.API_KEY_NOT_FOUND)
app.state.OPENAI_API_BASE_URL = form_data.url
app.state.OPENAI_API_KEY = form_data.key
return {
"OPENAI_API_KEY": app.state.OPENAI_API_KEY,
"status": True,
"OPENAI_API_BASE_URL": app.state.OPENAI_API_BASE_URL,
"OPENAI_API_KEY": app.state.OPENAI_API_KEY,
}

View File

@ -1,17 +1,25 @@
import sys
from fastapi import FastAPI, Depends, HTTPException
from fastapi.routing import APIRoute
from fastapi.middleware.cors import CORSMiddleware
import logging
from litellm.proxy.proxy_server import ProxyConfig, initialize
from litellm.proxy.proxy_server import app
from fastapi import FastAPI, Request, Depends, status, Response
from fastapi.responses import JSONResponse
from starlette.middleware.base import BaseHTTPMiddleware, RequestResponseEndpoint
from starlette.responses import StreamingResponse
import json
import time
import requests
from utils.utils import get_http_authorization_cred, get_current_user
from pydantic import BaseModel, ConfigDict
from typing import Optional, List
from utils.utils import get_verified_user, get_current_user, get_admin_user
from config import SRC_LOG_LEVELS, ENV
from constants import MESSAGES
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["LITELLM"])
@ -20,81 +28,324 @@ log.setLevel(SRC_LOG_LEVELS["LITELLM"])
from config import (
MODEL_FILTER_ENABLED,
MODEL_FILTER_LIST,
DATA_DIR,
LITELLM_PROXY_PORT,
LITELLM_PROXY_HOST,
)
from litellm.utils import get_llm_provider
import asyncio
import subprocess
import yaml
app = FastAPI()
origins = ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
proxy_config = ProxyConfig()
LITELLM_CONFIG_DIR = f"{DATA_DIR}/litellm/config.yaml"
with open(LITELLM_CONFIG_DIR, "r") as file:
litellm_config = yaml.safe_load(file)
app.state.CONFIG = litellm_config
# Global variable to store the subprocess reference
background_process = None
async def config():
router, model_list, general_settings = await proxy_config.load_config(
router=None, config_file_path="./data/litellm/config.yaml"
)
async def run_background_process(command):
global background_process
log.info("run_background_process")
await initialize(config="./data/litellm/config.yaml", telemetry=False)
try:
# Log the command to be executed
log.info(f"Executing command: {command}")
# Execute the command and create a subprocess
process = await asyncio.create_subprocess_exec(
*command, stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
background_process = process
log.info("Subprocess started successfully.")
# Capture STDERR for debugging purposes
stderr_output = await process.stderr.read()
stderr_text = stderr_output.decode().strip()
if stderr_text:
log.info(f"Subprocess STDERR: {stderr_text}")
# log.info output line by line
async for line in process.stdout:
log.info(line.decode().strip())
# Wait for the process to finish
returncode = await process.wait()
log.info(f"Subprocess exited with return code {returncode}")
except Exception as e:
log.error(f"Failed to start subprocess: {e}")
raise # Optionally re-raise the exception if you want it to propagate
async def startup():
await config()
async def start_litellm_background():
log.info("start_litellm_background")
# Command to run in the background
command = [
"litellm",
"--port",
str(LITELLM_PROXY_PORT),
"--host",
LITELLM_PROXY_HOST,
"--telemetry",
"False",
"--config",
LITELLM_CONFIG_DIR,
]
await run_background_process(command)
async def shutdown_litellm_background():
log.info("shutdown_litellm_background")
global background_process
if background_process:
background_process.terminate()
await background_process.wait() # Ensure the process has terminated
log.info("Subprocess terminated")
background_process = None
@app.on_event("startup")
async def on_startup():
await startup()
async def startup_event():
log.info("startup_event")
# TODO: Check config.yaml file and create one
asyncio.create_task(start_litellm_background())
app.state.MODEL_FILTER_ENABLED = MODEL_FILTER_ENABLED
app.state.MODEL_FILTER_LIST = MODEL_FILTER_LIST
@app.middleware("http")
async def auth_middleware(request: Request, call_next):
auth_header = request.headers.get("Authorization", "")
request.state.user = None
@app.get("/")
async def get_status():
return {"status": True}
async def restart_litellm():
"""
Endpoint to restart the litellm background service.
"""
log.info("Requested restart of litellm service.")
try:
# Shut down the existing process if it is running
await shutdown_litellm_background()
log.info("litellm service shutdown complete.")
# Restart the background service
asyncio.create_task(start_litellm_background())
log.info("litellm service restart complete.")
return {
"status": "success",
"message": "litellm service restarted successfully.",
}
except Exception as e:
log.info(f"Error restarting litellm service: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=str(e)
)
@app.get("/restart")
async def restart_litellm_handler(user=Depends(get_admin_user)):
return await restart_litellm()
@app.get("/config")
async def get_config(user=Depends(get_admin_user)):
return app.state.CONFIG
class LiteLLMConfigForm(BaseModel):
general_settings: Optional[dict] = None
litellm_settings: Optional[dict] = None
model_list: Optional[List[dict]] = None
router_settings: Optional[dict] = None
model_config = ConfigDict(protected_namespaces=())
@app.post("/config/update")
async def update_config(form_data: LiteLLMConfigForm, user=Depends(get_admin_user)):
app.state.CONFIG = form_data.model_dump(exclude_none=True)
with open(LITELLM_CONFIG_DIR, "w") as file:
yaml.dump(app.state.CONFIG, file)
await restart_litellm()
return app.state.CONFIG
@app.get("/models")
@app.get("/v1/models")
async def get_models(user=Depends(get_current_user)):
while not background_process:
await asyncio.sleep(0.1)
url = f"http://localhost:{LITELLM_PROXY_PORT}/v1"
r = None
try:
r = requests.request(method="GET", url=f"{url}/models")
r.raise_for_status()
data = r.json()
if app.state.MODEL_FILTER_ENABLED:
if user and user.role == "user":
data["data"] = list(
filter(
lambda model: model["id"] in app.state.MODEL_FILTER_LIST,
data["data"],
)
)
return data
except Exception as e:
log.exception(e)
error_detail = "Open WebUI: Server Connection Error"
if r is not None:
try:
res = r.json()
if "error" in res:
error_detail = f"External: {res['error']}"
except:
error_detail = f"External: {e}"
return {
"data": [
{
"id": model["model_name"],
"object": "model",
"created": int(time.time()),
"owned_by": "openai",
}
for model in app.state.CONFIG["model_list"]
],
"object": "list",
}
@app.get("/model/info")
async def get_model_list(user=Depends(get_admin_user)):
return {"data": app.state.CONFIG["model_list"]}
class AddLiteLLMModelForm(BaseModel):
model_name: str
litellm_params: dict
model_config = ConfigDict(protected_namespaces=())
@app.post("/model/new")
async def add_model_to_config(
form_data: AddLiteLLMModelForm, user=Depends(get_admin_user)
):
try:
get_llm_provider(model=form_data.model_name)
app.state.CONFIG["model_list"].append(form_data.model_dump())
with open(LITELLM_CONFIG_DIR, "w") as file:
yaml.dump(app.state.CONFIG, file)
await restart_litellm()
return {"message": MESSAGES.MODEL_ADDED(form_data.model_name)}
except Exception as e:
print(e)
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=str(e)
)
class DeleteLiteLLMModelForm(BaseModel):
id: str
@app.post("/model/delete")
async def delete_model_from_config(
form_data: DeleteLiteLLMModelForm, user=Depends(get_admin_user)
):
app.state.CONFIG["model_list"] = [
model
for model in app.state.CONFIG["model_list"]
if model["model_name"] != form_data.id
]
with open(LITELLM_CONFIG_DIR, "w") as file:
yaml.dump(app.state.CONFIG, file)
await restart_litellm()
return {"message": MESSAGES.MODEL_DELETED(form_data.id)}
@app.api_route("/{path:path}", methods=["GET", "POST", "PUT", "DELETE"])
async def proxy(path: str, request: Request, user=Depends(get_verified_user)):
body = await request.body()
url = f"http://localhost:{LITELLM_PROXY_PORT}"
target_url = f"{url}/{path}"
headers = {}
# headers["Authorization"] = f"Bearer {key}"
headers["Content-Type"] = "application/json"
r = None
try:
user = get_current_user(get_http_authorization_cred(auth_header))
log.debug(f"user: {user}")
request.state.user = user
r = requests.request(
method=request.method,
url=target_url,
data=body,
headers=headers,
stream=True,
)
r.raise_for_status()
# Check if response is SSE
if "text/event-stream" in r.headers.get("Content-Type", ""):
return StreamingResponse(
r.iter_content(chunk_size=8192),
status_code=r.status_code,
headers=dict(r.headers),
)
else:
response_data = r.json()
return response_data
except Exception as e:
return JSONResponse(status_code=400, content={"detail": str(e)})
log.exception(e)
error_detail = "Open WebUI: Server Connection Error"
if r is not None:
try:
res = r.json()
if "error" in res:
error_detail = f"External: {res['error']['message'] if 'message' in res['error'] else res['error']}"
except:
error_detail = f"External: {e}"
response = await call_next(request)
return response
class ModifyModelsResponseMiddleware(BaseHTTPMiddleware):
async def dispatch(
self, request: Request, call_next: RequestResponseEndpoint
) -> Response:
response = await call_next(request)
user = request.state.user
if "/models" in request.url.path:
if isinstance(response, StreamingResponse):
# Read the content of the streaming response
body = b""
async for chunk in response.body_iterator:
body += chunk
data = json.loads(body.decode("utf-8"))
if app.state.MODEL_FILTER_ENABLED:
if user and user.role == "user":
data["data"] = list(
filter(
lambda model: model["id"]
in app.state.MODEL_FILTER_LIST,
data["data"],
)
)
# Modified Flag
data["modified"] = True
return JSONResponse(content=data)
return response
app.add_middleware(ModifyModelsResponseMiddleware)
raise HTTPException(
status_code=r.status_code if r else 500, detail=error_detail
)

View File

@ -13,7 +13,6 @@ import os, shutil, logging, re
from pathlib import Path
from typing import List
from chromadb.utils import embedding_functions
from chromadb.utils.batch_utils import create_batches
from langchain_community.document_loaders import (
@ -38,6 +37,7 @@ import mimetypes
import uuid
import json
import sentence_transformers
from apps.ollama.main import generate_ollama_embeddings, GenerateEmbeddingsForm
@ -48,11 +48,8 @@ from apps.web.models.documents import (
)
from apps.rag.utils import (
query_doc,
query_embeddings_doc,
query_collection,
query_embeddings_collection,
get_embedding_model_path,
generate_openai_embeddings,
)
@ -69,7 +66,7 @@ from config import (
DOCS_DIR,
RAG_EMBEDDING_ENGINE,
RAG_EMBEDDING_MODEL,
RAG_EMBEDDING_MODEL_AUTO_UPDATE,
RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
RAG_OPENAI_API_BASE_URL,
RAG_OPENAI_API_KEY,
DEVICE_TYPE,
@ -101,15 +98,12 @@ app.state.OPENAI_API_KEY = RAG_OPENAI_API_KEY
app.state.PDF_EXTRACT_IMAGES = False
app.state.sentence_transformer_ef = (
embedding_functions.SentenceTransformerEmbeddingFunction(
model_name=get_embedding_model_path(
app.state.RAG_EMBEDDING_MODEL, RAG_EMBEDDING_MODEL_AUTO_UPDATE
),
if app.state.RAG_EMBEDDING_ENGINE == "":
app.state.sentence_transformer_ef = sentence_transformers.SentenceTransformer(
app.state.RAG_EMBEDDING_MODEL,
device=DEVICE_TYPE,
trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
)
)
origins = ["*"]
@ -185,13 +179,10 @@ async def update_embedding_config(
app.state.OPENAI_API_BASE_URL = form_data.openai_config.url
app.state.OPENAI_API_KEY = form_data.openai_config.key
else:
sentence_transformer_ef = (
embedding_functions.SentenceTransformerEmbeddingFunction(
model_name=get_embedding_model_path(
form_data.embedding_model, True
),
device=DEVICE_TYPE,
)
sentence_transformer_ef = sentence_transformers.SentenceTransformer(
app.state.RAG_EMBEDDING_MODEL,
device=DEVICE_TYPE,
trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
)
app.state.RAG_EMBEDDING_MODEL = form_data.embedding_model
app.state.sentence_transformer_ef = sentence_transformer_ef
@ -294,38 +285,34 @@ def query_doc_handler(
form_data: QueryDocForm,
user=Depends(get_current_user),
):
try:
if app.state.RAG_EMBEDDING_ENGINE == "":
return query_doc(
collection_name=form_data.collection_name,
query=form_data.query,
k=form_data.k if form_data.k else app.state.TOP_K,
embedding_function=app.state.sentence_transformer_ef,
query_embeddings = app.state.sentence_transformer_ef.encode(
form_data.query
).tolist()
elif app.state.RAG_EMBEDDING_ENGINE == "ollama":
query_embeddings = generate_ollama_embeddings(
GenerateEmbeddingsForm(
**{
"model": app.state.RAG_EMBEDDING_MODEL,
"prompt": form_data.query,
}
)
)
elif app.state.RAG_EMBEDDING_ENGINE == "openai":
query_embeddings = generate_openai_embeddings(
model=app.state.RAG_EMBEDDING_MODEL,
text=form_data.query,
key=app.state.OPENAI_API_KEY,
url=app.state.OPENAI_API_BASE_URL,
)
else:
if app.state.RAG_EMBEDDING_ENGINE == "ollama":
query_embeddings = generate_ollama_embeddings(
GenerateEmbeddingsForm(
**{
"model": app.state.RAG_EMBEDDING_MODEL,
"prompt": form_data.query,
}
)
)
elif app.state.RAG_EMBEDDING_ENGINE == "openai":
query_embeddings = generate_openai_embeddings(
model=app.state.RAG_EMBEDDING_MODEL,
text=form_data.query,
key=app.state.OPENAI_API_KEY,
url=app.state.OPENAI_API_BASE_URL,
)
return query_embeddings_doc(
collection_name=form_data.collection_name,
query_embeddings=query_embeddings,
k=form_data.k if form_data.k else app.state.TOP_K,
)
return query_embeddings_doc(
collection_name=form_data.collection_name,
query=form_data.query,
query_embeddings=query_embeddings,
k=form_data.k if form_data.k else app.state.TOP_K,
)
except Exception as e:
log.exception(e)
@ -348,36 +335,31 @@ def query_collection_handler(
):
try:
if app.state.RAG_EMBEDDING_ENGINE == "":
return query_collection(
collection_names=form_data.collection_names,
query=form_data.query,
k=form_data.k if form_data.k else app.state.TOP_K,
embedding_function=app.state.sentence_transformer_ef,
)
else:
if app.state.RAG_EMBEDDING_ENGINE == "ollama":
query_embeddings = generate_ollama_embeddings(
GenerateEmbeddingsForm(
**{
"model": app.state.RAG_EMBEDDING_MODEL,
"prompt": form_data.query,
}
)
query_embeddings = app.state.sentence_transformer_ef.encode(
form_data.query
).tolist()
elif app.state.RAG_EMBEDDING_ENGINE == "ollama":
query_embeddings = generate_ollama_embeddings(
GenerateEmbeddingsForm(
**{
"model": app.state.RAG_EMBEDDING_MODEL,
"prompt": form_data.query,
}
)
elif app.state.RAG_EMBEDDING_ENGINE == "openai":
query_embeddings = generate_openai_embeddings(
model=app.state.RAG_EMBEDDING_MODEL,
text=form_data.query,
key=app.state.OPENAI_API_KEY,
url=app.state.OPENAI_API_BASE_URL,
)
return query_embeddings_collection(
collection_names=form_data.collection_names,
query_embeddings=query_embeddings,
k=form_data.k if form_data.k else app.state.TOP_K,
)
elif app.state.RAG_EMBEDDING_ENGINE == "openai":
query_embeddings = generate_openai_embeddings(
model=app.state.RAG_EMBEDDING_MODEL,
text=form_data.query,
key=app.state.OPENAI_API_KEY,
url=app.state.OPENAI_API_BASE_URL,
)
return query_embeddings_collection(
collection_names=form_data.collection_names,
query_embeddings=query_embeddings,
k=form_data.k if form_data.k else app.state.TOP_K,
)
except Exception as e:
log.exception(e)
@ -445,6 +427,8 @@ def store_docs_in_vector_db(docs, collection_name, overwrite: bool = False) -> b
log.info(f"store_docs_in_vector_db {docs} {collection_name}")
texts = [doc.page_content for doc in docs]
texts = list(map(lambda x: x.replace("\n", " "), texts))
metadatas = [doc.metadata for doc in docs]
try:
@ -454,52 +438,38 @@ def store_docs_in_vector_db(docs, collection_name, overwrite: bool = False) -> b
log.info(f"deleting existing collection {collection_name}")
CHROMA_CLIENT.delete_collection(name=collection_name)
collection = CHROMA_CLIENT.create_collection(name=collection_name)
if app.state.RAG_EMBEDDING_ENGINE == "":
collection = CHROMA_CLIENT.create_collection(
name=collection_name,
embedding_function=app.state.sentence_transformer_ef,
)
for batch in create_batches(
api=CHROMA_CLIENT,
ids=[str(uuid.uuid1()) for _ in texts],
metadatas=metadatas,
documents=texts,
):
collection.add(*batch)
else:
collection = CHROMA_CLIENT.create_collection(name=collection_name)
if app.state.RAG_EMBEDDING_ENGINE == "ollama":
embeddings = [
generate_ollama_embeddings(
GenerateEmbeddingsForm(
**{"model": app.state.RAG_EMBEDDING_MODEL, "prompt": text}
)
embeddings = app.state.sentence_transformer_ef.encode(texts).tolist()
elif app.state.RAG_EMBEDDING_ENGINE == "ollama":
embeddings = [
generate_ollama_embeddings(
GenerateEmbeddingsForm(
**{"model": app.state.RAG_EMBEDDING_MODEL, "prompt": text}
)
for text in texts
]
elif app.state.RAG_EMBEDDING_ENGINE == "openai":
embeddings = [
generate_openai_embeddings(
model=app.state.RAG_EMBEDDING_MODEL,
text=text,
key=app.state.OPENAI_API_KEY,
url=app.state.OPENAI_API_BASE_URL,
)
for text in texts
]
)
for text in texts
]
elif app.state.RAG_EMBEDDING_ENGINE == "openai":
embeddings = [
generate_openai_embeddings(
model=app.state.RAG_EMBEDDING_MODEL,
text=text,
key=app.state.OPENAI_API_KEY,
url=app.state.OPENAI_API_BASE_URL,
)
for text in texts
]
for batch in create_batches(
api=CHROMA_CLIENT,
ids=[str(uuid.uuid1()) for _ in texts],
metadatas=metadatas,
embeddings=embeddings,
documents=texts,
):
collection.add(*batch)
for batch in create_batches(
api=CHROMA_CLIENT,
ids=[str(uuid.uuid1()) for _ in texts],
metadatas=metadatas,
embeddings=embeddings,
documents=texts,
):
collection.add(*batch)
return True
except Exception as e:

View File

@ -1,13 +1,12 @@
import os
import re
import logging
from typing import List
import requests
from typing import List
from huggingface_hub import snapshot_download
from apps.ollama.main import generate_ollama_embeddings, GenerateEmbeddingsForm
from apps.ollama.main import (
generate_ollama_embeddings,
GenerateEmbeddingsForm,
)
from config import SRC_LOG_LEVELS, CHROMA_CLIENT
@ -16,29 +15,12 @@ log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
def query_doc(collection_name: str, query: str, k: int, embedding_function):
try:
# if you use docker use the model from the environment variable
collection = CHROMA_CLIENT.get_collection(
name=collection_name,
embedding_function=embedding_function,
)
result = collection.query(
query_texts=[query],
n_results=k,
)
return result
except Exception as e:
raise e
def query_embeddings_doc(collection_name: str, query_embeddings, k: int):
def query_embeddings_doc(collection_name: str, query: str, query_embeddings, k: int):
try:
# if you use docker use the model from the environment variable
log.info(f"query_embeddings_doc {query_embeddings}")
collection = CHROMA_CLIENT.get_collection(
name=collection_name,
)
collection = CHROMA_CLIENT.get_collection(name=collection_name)
result = collection.query(
query_embeddings=[query_embeddings],
n_results=k,
@ -95,43 +77,20 @@ def merge_and_sort_query_results(query_results, k):
return merged_query_results
def query_collection(
collection_names: List[str], query: str, k: int, embedding_function
def query_embeddings_collection(
collection_names: List[str], query: str, query_embeddings, k: int
):
results = []
for collection_name in collection_names:
try:
# if you use docker use the model from the environment variable
collection = CHROMA_CLIENT.get_collection(
name=collection_name,
embedding_function=embedding_function,
)
result = collection.query(
query_texts=[query],
n_results=k,
)
results.append(result)
except:
pass
return merge_and_sort_query_results(results, k)
def query_embeddings_collection(collection_names: List[str], query_embeddings, k: int):
results = []
log.info(f"query_embeddings_collection {query_embeddings}")
for collection_name in collection_names:
try:
collection = CHROMA_CLIENT.get_collection(name=collection_name)
result = collection.query(
query_embeddings=[query_embeddings],
n_results=k,
result = query_embeddings_doc(
collection_name=collection_name,
query=query,
query_embeddings=query_embeddings,
k=k,
)
results.append(result)
except:
@ -197,51 +156,38 @@ def rag_messages(
context = doc["content"]
else:
if embedding_engine == "":
if doc["type"] == "collection":
context = query_collection(
collection_names=doc["collection_names"],
query=query,
k=k,
embedding_function=embedding_function,
)
else:
context = query_doc(
collection_name=doc["collection_name"],
query=query,
k=k,
embedding_function=embedding_function,
query_embeddings = embedding_function.encode(query).tolist()
elif embedding_engine == "ollama":
query_embeddings = generate_ollama_embeddings(
GenerateEmbeddingsForm(
**{
"model": embedding_model,
"prompt": query,
}
)
)
elif embedding_engine == "openai":
query_embeddings = generate_openai_embeddings(
model=embedding_model,
text=query,
key=openai_key,
url=openai_url,
)
if doc["type"] == "collection":
context = query_embeddings_collection(
collection_names=doc["collection_names"],
query=query,
query_embeddings=query_embeddings,
k=k,
)
else:
if embedding_engine == "ollama":
query_embeddings = generate_ollama_embeddings(
GenerateEmbeddingsForm(
**{
"model": embedding_model,
"prompt": query,
}
)
)
elif embedding_engine == "openai":
query_embeddings = generate_openai_embeddings(
model=embedding_model,
text=query,
key=openai_key,
url=openai_url,
)
if doc["type"] == "collection":
context = query_embeddings_collection(
collection_names=doc["collection_names"],
query_embeddings=query_embeddings,
k=k,
)
else:
context = query_embeddings_doc(
collection_name=doc["collection_name"],
query_embeddings=query_embeddings,
k=k,
)
context = query_embeddings_doc(
collection_name=doc["collection_name"],
query=query,
query_embeddings=query_embeddings,
k=k,
)
except Exception as e:
log.exception(e)
@ -283,46 +229,6 @@ def rag_messages(
return messages
def get_embedding_model_path(
embedding_model: str, update_embedding_model: bool = False
):
# Construct huggingface_hub kwargs with local_files_only to return the snapshot path
cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
local_files_only = not update_embedding_model
snapshot_kwargs = {
"cache_dir": cache_dir,
"local_files_only": local_files_only,
}
log.debug(f"embedding_model: {embedding_model}")
log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
# Inspiration from upstream sentence_transformers
if (
os.path.exists(embedding_model)
or ("\\" in embedding_model or embedding_model.count("/") > 1)
and local_files_only
):
# If fully qualified path exists, return input, else set repo_id
return embedding_model
elif "/" not in embedding_model:
# Set valid repo_id for model short-name
embedding_model = "sentence-transformers" + "/" + embedding_model
snapshot_kwargs["repo_id"] = embedding_model
# Attempt to query the huggingface_hub library to determine the local path and/or to update
try:
embedding_model_repo_path = snapshot_download(**snapshot_kwargs)
log.debug(f"embedding_model_repo_path: {embedding_model_repo_path}")
return embedding_model_repo_path
except Exception as e:
log.exception(f"Cannot determine embedding model snapshot path: {e}")
return embedding_model
def generate_openai_embeddings(
model: str, text: str, key: str, url: str = "https://api.openai.com/v1"
):

View File

@ -28,7 +28,7 @@ from apps.web.models.tags import (
from constants import ERROR_MESSAGES
from config import SRC_LOG_LEVELS
from config import SRC_LOG_LEVELS, ENABLE_ADMIN_EXPORT
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["MODELS"])
@ -79,6 +79,11 @@ async def get_all_user_chats(user=Depends(get_current_user)):
@router.get("/all/db", response_model=List[ChatResponse])
async def get_all_user_chats_in_db(user=Depends(get_admin_user)):
if not ENABLE_ADMIN_EXPORT:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail=ERROR_MESSAGES.ACCESS_PROHIBITED,
)
return [
ChatResponse(**{**chat.model_dump(), "chat": json.loads(chat.chat)})
for chat in Chats.get_all_chats()

View File

@ -91,7 +91,11 @@ async def download_chat_as_pdf(
@router.get("/db/download")
async def download_db(user=Depends(get_admin_user)):
if not ENABLE_ADMIN_EXPORT:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail=ERROR_MESSAGES.ACCESS_PROHIBITED,
)
return FileResponse(
f"{DATA_DIR}/webui.db",
media_type="application/octet-stream",

View File

@ -382,6 +382,8 @@ MODEL_FILTER_LIST = [model.strip() for model in MODEL_FILTER_LIST.split(";")]
WEBHOOK_URL = os.environ.get("WEBHOOK_URL", "")
ENABLE_ADMIN_EXPORT = os.environ.get("ENABLE_ADMIN_EXPORT", "True").lower() == "true"
####################################
# WEBUI_VERSION
####################################
@ -416,18 +418,19 @@ if WEBUI_AUTH and WEBUI_SECRET_KEY == "":
####################################
CHROMA_DATA_PATH = f"{DATA_DIR}/vector_db"
# this uses the model defined in the Dockerfile ENV variable. If you dont use docker or docker based deployments such as k8s, the default embedding model will be used (all-MiniLM-L6-v2)
# this uses the model defined in the Dockerfile ENV variable. If you dont use docker or docker based deployments such as k8s, the default embedding model will be used (sentence-transformers/all-MiniLM-L6-v2)
RAG_EMBEDDING_ENGINE = os.environ.get("RAG_EMBEDDING_ENGINE", "")
RAG_EMBEDDING_MODEL = os.environ.get("RAG_EMBEDDING_MODEL", "all-MiniLM-L6-v2")
RAG_EMBEDDING_MODEL = os.environ.get(
"RAG_EMBEDDING_MODEL", "sentence-transformers/all-MiniLM-L6-v2"
)
log.info(f"Embedding model set: {RAG_EMBEDDING_MODEL}"),
RAG_EMBEDDING_MODEL_AUTO_UPDATE = (
os.environ.get("RAG_EMBEDDING_MODEL_AUTO_UPDATE", "").lower() == "true"
RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE = (
os.environ.get("RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE", "").lower() == "true"
)
# device type embedding models - "cpu" (default), "cuda" (nvidia gpu required) or "mps" (apple silicon) - choosing this right can lead to better performance
USE_CUDA = os.environ.get("USE_CUDA_DOCKER", "false")
@ -484,9 +487,24 @@ AUTOMATIC1111_BASE_URL = os.getenv("AUTOMATIC1111_BASE_URL", "")
COMFYUI_BASE_URL = os.getenv("COMFYUI_BASE_URL", "")
IMAGES_OPENAI_API_BASE_URL = os.getenv(
"IMAGES_OPENAI_API_BASE_URL", OPENAI_API_BASE_URL
)
IMAGES_OPENAI_API_KEY = os.getenv("IMAGES_OPENAI_API_KEY", OPENAI_API_KEY)
####################################
# Audio
####################################
AUDIO_OPENAI_API_BASE_URL = os.getenv("AUDIO_OPENAI_API_BASE_URL", OPENAI_API_BASE_URL)
AUDIO_OPENAI_API_KEY = os.getenv("AUDIO_OPENAI_API_KEY", OPENAI_API_KEY)
####################################
# LiteLLM
####################################
LITELLM_PROXY_PORT = int(os.getenv("LITELLM_PROXY_PORT", "14365"))
if LITELLM_PROXY_PORT < 0 or LITELLM_PROXY_PORT > 65535:
raise ValueError("Invalid port number for LITELLM_PROXY_PORT")
LITELLM_PROXY_HOST = os.getenv("LITELLM_PROXY_HOST", "127.0.0.1")

View File

@ -3,6 +3,10 @@ from enum import Enum
class MESSAGES(str, Enum):
DEFAULT = lambda msg="": f"{msg if msg else ''}"
MODEL_ADDED = lambda model="": f"The model '{model}' has been added successfully."
MODEL_DELETED = (
lambda model="": f"The model '{model}' has been deleted successfully."
)
class WEBHOOK_MESSAGES(str, Enum):

View File

@ -20,12 +20,17 @@ from starlette.middleware.base import BaseHTTPMiddleware
from apps.ollama.main import app as ollama_app
from apps.openai.main import app as openai_app
from apps.litellm.main import app as litellm_app, startup as litellm_app_startup
from apps.litellm.main import (
app as litellm_app,
start_litellm_background,
shutdown_litellm_background,
)
from apps.audio.main import app as audio_app
from apps.images.main import app as images_app
from apps.rag.main import app as rag_app
from apps.web.main import app as webui_app
import asyncio
from pydantic import BaseModel
from typing import List
@ -47,6 +52,7 @@ from config import (
GLOBAL_LOG_LEVEL,
SRC_LOG_LEVELS,
WEBHOOK_URL,
ENABLE_ADMIN_EXPORT,
)
from constants import ERROR_MESSAGES
@ -170,7 +176,7 @@ async def check_url(request: Request, call_next):
@app.on_event("startup")
async def on_startup():
await litellm_app_startup()
asyncio.create_task(start_litellm_background())
app.mount("/api/v1", webui_app)
@ -202,6 +208,7 @@ async def get_app_config():
"default_models": webui_app.state.DEFAULT_MODELS,
"default_prompt_suggestions": webui_app.state.DEFAULT_PROMPT_SUGGESTIONS,
"trusted_header_auth": bool(webui_app.state.AUTH_TRUSTED_EMAIL_HEADER),
"admin_export_enabled": ENABLE_ADMIN_EXPORT,
}
@ -315,3 +322,8 @@ app.mount(
SPAStaticFiles(directory=FRONTEND_BUILD_DIR, html=True),
name="spa-static-files",
)
@app.on_event("shutdown")
async def shutdown_event():
await shutdown_litellm_background()

View File

@ -17,7 +17,9 @@ peewee
peewee-migrate
bcrypt
litellm==1.30.7
litellm==1.35.17
litellm[proxy]==1.35.17
boto3
argon2-cffi
@ -25,6 +27,7 @@ apscheduler
google-generativeai
langchain
langchain-chroma
langchain-community
fake_useragent
chromadb
@ -43,6 +46,7 @@ opencv-python-headless
rapidocr-onnxruntime
fpdf2
rank_bm25
faster-whisper

4
package-lock.json generated
View File

@ -1,12 +1,12 @@
{
"name": "open-webui",
"version": "0.1.120",
"version": "0.1.121",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "open-webui",
"version": "0.1.120",
"version": "0.1.121",
"dependencies": {
"@sveltejs/adapter-node": "^1.3.1",
"async": "^3.2.5",

View File

@ -1,6 +1,6 @@
{
"name": "open-webui",
"version": "0.1.120",
"version": "0.1.121",
"private": true,
"scripts": {
"dev": "vite dev --host",

View File

@ -72,10 +72,10 @@ export const updateImageGenerationConfig = async (
return res;
};
export const getOpenAIKey = async (token: string = '') => {
export const getOpenAIConfig = async (token: string = '') => {
let error = null;
const res = await fetch(`${IMAGES_API_BASE_URL}/key`, {
const res = await fetch(`${IMAGES_API_BASE_URL}/openai/config`, {
method: 'GET',
headers: {
Accept: 'application/json',
@ -101,13 +101,13 @@ export const getOpenAIKey = async (token: string = '') => {
throw error;
}
return res.OPENAI_API_KEY;
return res;
};
export const updateOpenAIKey = async (token: string = '', key: string) => {
export const updateOpenAIConfig = async (token: string = '', url: string, key: string) => {
let error = null;
const res = await fetch(`${IMAGES_API_BASE_URL}/key/update`, {
const res = await fetch(`${IMAGES_API_BASE_URL}/openai/config/update`, {
method: 'POST',
headers: {
Accept: 'application/json',
@ -115,6 +115,7 @@ export const updateOpenAIKey = async (token: string = '', key: string) => {
...(token && { authorization: `Bearer ${token}` })
},
body: JSON.stringify({
url: url,
key: key
})
})
@ -136,7 +137,7 @@ export const updateOpenAIKey = async (token: string = '', key: string) => {
throw error;
}
return res.OPENAI_API_KEY;
return res;
};
export const getImageGenerationEngineUrls = async (token: string = '') => {

View File

@ -0,0 +1,70 @@
type TextStreamUpdate = {
done: boolean;
value: string;
};
// createOpenAITextStream takes a ReadableStreamDefaultReader from an SSE response,
// and returns an async generator that emits delta updates with large deltas chunked into random sized chunks
export async function createOpenAITextStream(
messageStream: ReadableStreamDefaultReader,
splitLargeDeltas: boolean
): Promise<AsyncGenerator<TextStreamUpdate>> {
let iterator = openAIStreamToIterator(messageStream);
if (splitLargeDeltas) {
iterator = streamLargeDeltasAsRandomChunks(iterator);
}
return iterator;
}
async function* openAIStreamToIterator(
reader: ReadableStreamDefaultReader
): AsyncGenerator<TextStreamUpdate> {
while (true) {
const { value, done } = await reader.read();
if (done) {
yield { done: true, value: '' };
break;
}
const lines = value.split('\n');
for (const line of lines) {
if (line !== '') {
console.log(line);
if (line === 'data: [DONE]') {
yield { done: true, value: '' };
} else {
const data = JSON.parse(line.replace(/^data: /, ''));
console.log(data);
yield { done: false, value: data.choices[0].delta.content ?? '' };
}
}
}
}
}
// streamLargeDeltasAsRandomChunks will chunk large deltas (length > 5) into random sized chunks between 1-3 characters
// This is to simulate a more fluid streaming, even though some providers may send large chunks of text at once
async function* streamLargeDeltasAsRandomChunks(
iterator: AsyncGenerator<TextStreamUpdate>
): AsyncGenerator<TextStreamUpdate> {
for await (const textStreamUpdate of iterator) {
if (textStreamUpdate.done) {
yield textStreamUpdate;
return;
}
let content = textStreamUpdate.value;
if (content.length < 5) {
yield { done: false, value: content };
continue;
}
while (content != '') {
const chunkSize = Math.min(Math.floor(Math.random() * 3) + 1, content.length);
const chunk = content.slice(0, chunkSize);
yield { done: false, value: chunk };
await sleep(5);
content = content.slice(chunkSize);
}
}
}
const sleep = (ms: number) => new Promise((resolve) => setTimeout(resolve, ms));

View File

@ -1,6 +1,7 @@
<script lang="ts">
import { downloadDatabase } from '$lib/apis/utils';
import { onMount, getContext } from 'svelte';
import { config } from '$lib/stores';
const i18n = getContext('i18n');
@ -24,32 +25,34 @@
<div class=" flex w-full justify-between">
<!-- <div class=" self-center text-xs font-medium">{$i18n.t('Allow Chat Deletion')}</div> -->
<button
class=" flex rounded-md py-1.5 px-3 w-full hover:bg-gray-200 dark:hover:bg-gray-800 transition"
type="button"
on:click={() => {
// exportAllUserChats();
{#if $config?.admin_export_enabled ?? true}
<button
class=" flex rounded-md py-1.5 px-3 w-full hover:bg-gray-200 dark:hover:bg-gray-800 transition"
type="button"
on:click={() => {
// exportAllUserChats();
downloadDatabase(localStorage.token);
}}
>
<div class=" self-center mr-3">
<svg
xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 16 16"
fill="currentColor"
class="w-4 h-4"
>
<path d="M2 3a1 1 0 0 1 1-1h10a1 1 0 0 1 1 1v1a1 1 0 0 1-1 1H3a1 1 0 0 1-1-1V3Z" />
<path
fill-rule="evenodd"
d="M13 6H3v6a2 2 0 0 0 2 2h6a2 2 0 0 0 2-2V6ZM8.75 7.75a.75.75 0 0 0-1.5 0v2.69L6.03 9.22a.75.75 0 0 0-1.06 1.06l2.5 2.5a.75.75 0 0 0 1.06 0l2.5-2.5a.75.75 0 1 0-1.06-1.06l-1.22 1.22V7.75Z"
clip-rule="evenodd"
/>
</svg>
</div>
<div class=" self-center text-sm font-medium">{$i18n.t('Download Database')}</div>
</button>
downloadDatabase(localStorage.token);
}}
>
<div class=" self-center mr-3">
<svg
xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 16 16"
fill="currentColor"
class="w-4 h-4"
>
<path d="M2 3a1 1 0 0 1 1-1h10a1 1 0 0 1 1 1v1a1 1 0 0 1-1 1H3a1 1 0 0 1-1-1V3Z" />
<path
fill-rule="evenodd"
d="M13 6H3v6a2 2 0 0 0 2 2h6a2 2 0 0 0 2-2V6ZM8.75 7.75a.75.75 0 0 0-1.5 0v2.69L6.03 9.22a.75.75 0 0 0-1.06 1.06l2.5 2.5a.75.75 0 0 0 1.06 0l2.5-2.5a.75.75 0 1 0-1.06-1.06l-1.22 1.22V7.75Z"
clip-rule="evenodd"
/>
</svg>
</div>
<div class=" self-center text-sm font-medium">{$i18n.t('Download Database')}</div>
</button>
{/if}
</div>
</div>
</div>

View File

@ -75,14 +75,16 @@
};
const updateConfigHandler = async () => {
const res = await updateAudioConfig(localStorage.token, {
url: OpenAIUrl,
key: OpenAIKey
});
if (TTSEngine === 'openai') {
const res = await updateAudioConfig(localStorage.token, {
url: OpenAIUrl,
key: OpenAIKey
});
if (res) {
OpenAIUrl = res.OPENAI_API_BASE_URL;
OpenAIKey = res.OPENAI_API_KEY;
if (res) {
OpenAIUrl = res.OPENAI_API_BASE_URL;
OpenAIKey = res.OPENAI_API_KEY;
}
}
};

View File

@ -301,7 +301,7 @@
</button>
{/if}
{#if $user?.role === 'admin'}
{#if $user?.role === 'admin' && ($config?.admin_export_enabled ?? true)}
<hr class=" dark:border-gray-700" />
<button

View File

@ -15,8 +15,8 @@
updateImageSize,
getImageSteps,
updateImageSteps,
getOpenAIKey,
updateOpenAIKey
getOpenAIConfig,
updateOpenAIConfig
} from '$lib/apis/images';
import { getBackendConfig } from '$lib/apis';
const dispatch = createEventDispatcher();
@ -33,6 +33,7 @@
let AUTOMATIC1111_BASE_URL = '';
let COMFYUI_BASE_URL = '';
let OPENAI_API_BASE_URL = '';
let OPENAI_API_KEY = '';
let selectedModel = '';
@ -131,7 +132,10 @@
AUTOMATIC1111_BASE_URL = URLS.AUTOMATIC1111_BASE_URL;
COMFYUI_BASE_URL = URLS.COMFYUI_BASE_URL;
OPENAI_API_KEY = await getOpenAIKey(localStorage.token);
const config = await getOpenAIConfig(localStorage.token);
OPENAI_API_KEY = config.OPENAI_API_KEY;
OPENAI_API_BASE_URL = config.OPENAI_API_BASE_URL;
imageSize = await getImageSize(localStorage.token);
steps = await getImageSteps(localStorage.token);
@ -149,7 +153,7 @@
loading = true;
if (imageGenerationEngine === 'openai') {
await updateOpenAIKey(localStorage.token, OPENAI_API_KEY);
await updateOpenAIConfig(localStorage.token, OPENAI_API_BASE_URL, OPENAI_API_KEY);
}
await updateDefaultImageGenerationModel(localStorage.token, selectedModel);
@ -300,13 +304,22 @@
</button>
</div>
{:else if imageGenerationEngine === 'openai'}
<div class=" mb-2.5 text-sm font-medium">{$i18n.t('OpenAI API Key')}</div>
<div class="flex w-full">
<div class="flex-1 mr-2">
<div>
<div class=" mb-1.5 text-sm font-medium">{$i18n.t('OpenAI API Config')}</div>
<div class="flex gap-2 mb-1">
<input
class="w-full rounded-lg py-2 px-4 text-sm dark:text-gray-300 dark:bg-gray-850 outline-none"
placeholder={$i18n.t('Enter API Key')}
placeholder={$i18n.t('API Base URL')}
bind:value={OPENAI_API_BASE_URL}
required
/>
<input
class="w-full rounded-lg py-2 px-4 text-sm dark:text-gray-300 dark:bg-gray-850 outline-none"
placeholder={$i18n.t('API Key')}
bind:value={OPENAI_API_KEY}
required
/>
</div>
</div>
@ -319,19 +332,39 @@
<div class=" mb-2.5 text-sm font-medium">{$i18n.t('Set Default Model')}</div>
<div class="flex w-full">
<div class="flex-1 mr-2">
<select
class="w-full rounded-lg py-2 px-4 text-sm dark:text-gray-300 dark:bg-gray-850 outline-none"
bind:value={selectedModel}
placeholder={$i18n.t('Select a model')}
required
>
{#if !selectedModel}
<option value="" disabled selected>{$i18n.t('Select a model')}</option>
{/if}
{#each models ?? [] as model}
<option value={model.id} class="bg-gray-100 dark:bg-gray-700">{model.name}</option>
{/each}
</select>
{#if imageGenerationEngine === 'openai' && !OPENAI_API_BASE_URL.includes('https://api.openai.com')}
<div class="flex w-full">
<div class="flex-1">
<input
list="model-list"
class="w-full rounded-lg py-2 px-4 text-sm dark:text-gray-300 dark:bg-gray-850 outline-none"
bind:value={selectedModel}
placeholder="Select a model"
/>
<datalist id="model-list">
{#each models ?? [] as model}
<option value={model.id}>{model.name}</option>
{/each}
</datalist>
</div>
</div>
{:else}
<select
class="w-full rounded-lg py-2 px-4 text-sm dark:text-gray-300 dark:bg-gray-850 outline-none"
bind:value={selectedModel}
placeholder={$i18n.t('Select a model')}
required
>
{#if !selectedModel}
<option value="" disabled selected>{$i18n.t('Select a model')}</option>
{/if}
{#each models ?? [] as model}
<option value={model.id} class="bg-gray-100 dark:bg-gray-700">{model.name}</option
>
{/each}
</select>
{/if}
</div>
</div>
</div>

View File

@ -17,11 +17,17 @@
let titleAutoGenerateModelExternal = '';
let fullScreenMode = false;
let titleGenerationPrompt = '';
let splitLargeChunks = false;
// Interface
let promptSuggestions = [];
let showUsername = false;
const toggleSplitLargeChunks = async () => {
splitLargeChunks = !splitLargeChunks;
saveSettings({ splitLargeChunks: splitLargeChunks });
};
const toggleFullScreenMode = async () => {
fullScreenMode = !fullScreenMode;
saveSettings({ fullScreenMode: fullScreenMode });
@ -197,6 +203,28 @@
</button>
</div>
</div>
<div>
<div class=" py-0.5 flex w-full justify-between">
<div class=" self-center text-xs font-medium">
{$i18n.t('Fluidly stream large external response chunks')}
</div>
<button
class="p-1 px-3 text-xs flex rounded transition"
on:click={() => {
toggleSplitLargeChunks();
}}
type="button"
>
{#if splitLargeChunks === true}
<span class="ml-2 self-center">{$i18n.t('On')}</span>
{:else}
<span class="ml-2 self-center">{$i18n.t('Off')}</span>
{/if}
</button>
</div>
</div>
</div>
<hr class=" dark:border-gray-700" />

View File

@ -13,7 +13,7 @@
uploadModel
} from '$lib/apis/ollama';
import { WEBUI_API_BASE_URL, WEBUI_BASE_URL } from '$lib/constants';
import { WEBUI_NAME, models, user } from '$lib/stores';
import { WEBUI_NAME, models, MODEL_DOWNLOAD_POOL, user } from '$lib/stores';
import { splitStream } from '$lib/utils';
import { onMount, getContext } from 'svelte';
import { addLiteLLMModel, deleteLiteLLMModel, getLiteLLMModelInfo } from '$lib/apis/litellm';
@ -35,7 +35,7 @@
let liteLLMRPM = '';
let liteLLMMaxTokens = '';
let deleteLiteLLMModelId = '';
let deleteLiteLLMModelName = '';
$: liteLLMModelName = liteLLMModel;
@ -50,12 +50,6 @@
let showExperimentalOllama = false;
let ollamaVersion = '';
const MAX_PARALLEL_DOWNLOADS = 3;
const modelDownloadQueue = queue(
(task: { modelName: string }, cb) =>
pullModelHandlerProcessor({ modelName: task.modelName, callback: cb }),
MAX_PARALLEL_DOWNLOADS
);
let modelDownloadStatus: Record<string, any> = {};
let modelTransferring = false;
let modelTag = '';
@ -140,7 +134,8 @@
const pullModelHandler = async () => {
const sanitizedModelTag = modelTag.trim().replace(/^ollama\s+(run|pull)\s+/, '');
if (modelDownloadStatus[sanitizedModelTag]) {
console.log($MODEL_DOWNLOAD_POOL);
if ($MODEL_DOWNLOAD_POOL[sanitizedModelTag]) {
toast.error(
$i18n.t(`Model '{{modelTag}}' is already in queue for downloading.`, {
modelTag: sanitizedModelTag
@ -148,40 +143,117 @@
);
return;
}
if (Object.keys(modelDownloadStatus).length === 3) {
if (Object.keys($MODEL_DOWNLOAD_POOL).length === MAX_PARALLEL_DOWNLOADS) {
toast.error(
$i18n.t('Maximum of 3 models can be downloaded simultaneously. Please try again later.')
);
return;
}
modelTransferring = true;
const res = await pullModel(localStorage.token, sanitizedModelTag, '0').catch((error) => {
toast.error(error);
return null;
});
modelDownloadQueue.push(
{ modelName: sanitizedModelTag },
async (data: { modelName: string; success: boolean; error?: Error }) => {
const { modelName } = data;
// Remove the downloaded model
delete modelDownloadStatus[modelName];
if (res) {
const reader = res.body
.pipeThrough(new TextDecoderStream())
.pipeThrough(splitStream('\n'))
.getReader();
modelDownloadStatus = { ...modelDownloadStatus };
while (true) {
try {
const { value, done } = await reader.read();
if (done) break;
if (!data.success) {
toast.error(data.error);
} else {
toast.success(
$i18n.t(`Model '{{modelName}}' has been successfully downloaded.`, { modelName })
);
let lines = value.split('\n');
const notification = new Notification($WEBUI_NAME, {
body: $i18n.t(`Model '{{modelName}}' has been successfully downloaded.`, { modelName }),
icon: `${WEBUI_BASE_URL}/static/favicon.png`
});
for (const line of lines) {
if (line !== '') {
let data = JSON.parse(line);
console.log(data);
if (data.error) {
throw data.error;
}
if (data.detail) {
throw data.detail;
}
models.set(await getModels());
if (data.id) {
MODEL_DOWNLOAD_POOL.set({
...$MODEL_DOWNLOAD_POOL,
[sanitizedModelTag]: {
...$MODEL_DOWNLOAD_POOL[sanitizedModelTag],
requestId: data.id,
reader,
done: false
}
});
console.log(data);
}
if (data.status) {
if (data.digest) {
let downloadProgress = 0;
if (data.completed) {
downloadProgress = Math.round((data.completed / data.total) * 1000) / 10;
} else {
downloadProgress = 100;
}
MODEL_DOWNLOAD_POOL.set({
...$MODEL_DOWNLOAD_POOL,
[sanitizedModelTag]: {
...$MODEL_DOWNLOAD_POOL[sanitizedModelTag],
pullProgress: downloadProgress,
digest: data.digest
}
});
} else {
toast.success(data.status);
MODEL_DOWNLOAD_POOL.set({
...$MODEL_DOWNLOAD_POOL,
[sanitizedModelTag]: {
...$MODEL_DOWNLOAD_POOL[sanitizedModelTag],
done: data.status === 'success'
}
});
}
}
}
}
} catch (error) {
console.log(error);
if (typeof error !== 'string') {
error = error.message;
}
toast.error(error);
// opts.callback({ success: false, error, modelName: opts.modelName });
}
}
);
console.log($MODEL_DOWNLOAD_POOL[sanitizedModelTag]);
if ($MODEL_DOWNLOAD_POOL[sanitizedModelTag].done) {
toast.success(
$i18n.t(`Model '{{modelName}}' has been successfully downloaded.`, {
modelName: sanitizedModelTag
})
);
models.set(await getModels(localStorage.token));
} else {
toast.error('Download canceled');
}
delete $MODEL_DOWNLOAD_POOL[sanitizedModelTag];
MODEL_DOWNLOAD_POOL.set({
...$MODEL_DOWNLOAD_POOL
});
}
modelTag = '';
modelTransferring = false;
@ -352,88 +424,18 @@
models.set(await getModels());
};
const pullModelHandlerProcessor = async (opts: { modelName: string; callback: Function }) => {
const res = await pullModel(localStorage.token, opts.modelName, selectedOllamaUrlIdx).catch(
(error) => {
opts.callback({ success: false, error, modelName: opts.modelName });
return null;
}
);
const cancelModelPullHandler = async (model: string) => {
const { reader, requestId } = $MODEL_DOWNLOAD_POOL[model];
if (reader) {
await reader.cancel();
if (res) {
const reader = res.body
.pipeThrough(new TextDecoderStream())
.pipeThrough(splitStream('\n'))
.getReader();
while (true) {
try {
const { value, done } = await reader.read();
if (done) break;
let lines = value.split('\n');
for (const line of lines) {
if (line !== '') {
let data = JSON.parse(line);
console.log(data);
if (data.error) {
throw data.error;
}
if (data.detail) {
throw data.detail;
}
if (data.id) {
modelDownloadStatus[opts.modelName] = {
...modelDownloadStatus[opts.modelName],
requestId: data.id,
reader,
done: false
};
console.log(data);
}
if (data.status) {
if (data.digest) {
let downloadProgress = 0;
if (data.completed) {
downloadProgress = Math.round((data.completed / data.total) * 1000) / 10;
} else {
downloadProgress = 100;
}
modelDownloadStatus[opts.modelName] = {
...modelDownloadStatus[opts.modelName],
pullProgress: downloadProgress,
digest: data.digest
};
} else {
toast.success(data.status);
modelDownloadStatus[opts.modelName] = {
...modelDownloadStatus[opts.modelName],
done: data.status === 'success'
};
}
}
}
}
} catch (error) {
console.log(error);
if (typeof error !== 'string') {
error = error.message;
}
opts.callback({ success: false, error, modelName: opts.modelName });
}
}
console.log(modelDownloadStatus[opts.modelName]);
if (modelDownloadStatus[opts.modelName].done) {
opts.callback({ success: true, modelName: opts.modelName });
} else {
opts.callback({ success: false, error: 'Download canceled', modelName: opts.modelName });
}
await cancelOllamaRequest(localStorage.token, requestId);
delete $MODEL_DOWNLOAD_POOL[model];
MODEL_DOWNLOAD_POOL.set({
...$MODEL_DOWNLOAD_POOL
});
await deleteModel(localStorage.token, model);
toast.success(`${model} download has been canceled`);
}
};
@ -472,7 +474,7 @@
};
const deleteLiteLLMModelHandler = async () => {
const res = await deleteLiteLLMModel(localStorage.token, deleteLiteLLMModelId).catch(
const res = await deleteLiteLLMModel(localStorage.token, deleteLiteLLMModelName).catch(
(error) => {
toast.error(error);
return null;
@ -485,7 +487,7 @@
}
}
deleteLiteLLMModelId = '';
deleteLiteLLMModelName = '';
liteLLMModelInfo = await getLiteLLMModelInfo(localStorage.token);
models.set(await getModels());
};
@ -503,18 +505,6 @@
ollamaVersion = await getOllamaVersion(localStorage.token).catch((error) => false);
liteLLMModelInfo = await getLiteLLMModelInfo(localStorage.token);
});
const cancelModelPullHandler = async (model: string) => {
const { reader, requestId } = modelDownloadStatus[model];
if (reader) {
await reader.cancel();
await cancelOllamaRequest(localStorage.token, requestId);
delete modelDownloadStatus[model];
await deleteModel(localStorage.token, model);
toast.success(`${model} download has been canceled`);
}
};
</script>
<div class="flex flex-col h-full justify-between text-sm">
@ -643,9 +633,9 @@
>
</div>
{#if Object.keys(modelDownloadStatus).length > 0}
{#each Object.keys(modelDownloadStatus) as model}
{#if 'pullProgress' in modelDownloadStatus[model]}
{#if Object.keys($MODEL_DOWNLOAD_POOL).length > 0}
{#each Object.keys($MODEL_DOWNLOAD_POOL) as model}
{#if 'pullProgress' in $MODEL_DOWNLOAD_POOL[model]}
<div class="flex flex-col">
<div class="font-medium mb-1">{model}</div>
<div class="">
@ -655,10 +645,10 @@
class="dark:bg-gray-600 bg-gray-500 text-xs font-medium text-gray-100 text-center p-0.5 leading-none rounded-full"
style="width: {Math.max(
15,
modelDownloadStatus[model].pullProgress ?? 0
$MODEL_DOWNLOAD_POOL[model].pullProgress ?? 0
)}%"
>
{modelDownloadStatus[model].pullProgress ?? 0}%
{$MODEL_DOWNLOAD_POOL[model].pullProgress ?? 0}%
</div>
</div>
@ -689,9 +679,9 @@
</button>
</Tooltip>
</div>
{#if 'digest' in modelDownloadStatus[model]}
{#if 'digest' in $MODEL_DOWNLOAD_POOL[model]}
<div class="mt-1 text-xs dark:text-gray-500" style="font-size: 0.5rem;">
{modelDownloadStatus[model].digest}
{$MODEL_DOWNLOAD_POOL[model].digest}
</div>
{/if}
</div>
@ -1099,14 +1089,14 @@
<div class="flex-1 mr-2">
<select
class="w-full rounded-lg py-2 px-4 text-sm dark:text-gray-300 dark:bg-gray-850 outline-none"
bind:value={deleteLiteLLMModelId}
bind:value={deleteLiteLLMModelName}
placeholder={$i18n.t('Select a model')}
>
{#if !deleteLiteLLMModelId}
{#if !deleteLiteLLMModelName}
<option value="" disabled selected>{$i18n.t('Select a model')}</option>
{/if}
{#each liteLLMModelInfo as model}
<option value={model.model_info.id} class="bg-gray-100 dark:bg-gray-700"
<option value={model.model_name} class="bg-gray-100 dark:bg-gray-700"
>{model.model_name}</option
>
{/each}

View File

@ -180,7 +180,7 @@
}
}}
>
<option value="">{$i18n.t('Default (SentenceTransformer)')}</option>
<option value="">{$i18n.t('Default (SentenceTransformers)')}</option>
<option value="ollama">{$i18n.t('Ollama')}</option>
<option value="openai">{$i18n.t('OpenAI')}</option>
</select>

View File

@ -67,7 +67,7 @@
<div class="flex flex-col md:flex-row w-full px-5 py-4 md:space-x-4 dark:text-gray-200">
<div class=" flex flex-col w-full sm:flex-row sm:justify-center sm:space-x-6">
{#if chats.length > 0}
<div class="text-left text-sm w-full mb-4 h-[22rem] overflow-y-scroll">
<div class="text-left text-sm w-full mb-4 max-h-[22rem] overflow-y-scroll">
<div class="relative overflow-x-auto">
<table class="w-full text-sm text-left text-gray-500 dark:text-gray-400 table-auto">
<thead

View File

@ -152,6 +152,7 @@
"File Mode": "",
"File not found.": "",
"Fingerprint spoofing detected: Unable to use initials as avatar. Defaulting to default profile image.": "",
"Fluidly stream large external response chunks": "",
"Focus chat input": "",
"Format your variables using square brackets like this:": "",
"From (Base Model)": "",

View File

@ -62,7 +62,7 @@
"Click here to check other modelfiles.": "Klik hier om andere modelfiles te controleren.",
"Click here to select": "Klik hier om te selecteren",
"Click here to select documents.": "Klik hier om documenten te selecteren",
"click here.": "click here.",
"click here.": "klik hier.",
"Click on the user role button to change a user's role.": "Klik op de gebruikersrol knop om de rol van een gebruiker te wijzigen.",
"Close": "Sluiten",
"Collection": "Verzameling",

View File

@ -2,39 +2,39 @@
"'s', 'm', 'h', 'd', 'w' or '-1' for no expiration.": "'s', 'm', 'h', 'd', 'w' или '-1' для не истечение.",
"(Beta)": "(бета)",
"(e.g. `sh webui.sh --api`)": "(например: `sh webui.sh --api`)",
"(latest)": "(новый)",
"{{modelName}} is thinking...": "{{modelName}} это думает...",
"(latest)": "(последний)",
"{{modelName}} is thinking...": "{{modelName}} думает...",
"{{webUIName}} Backend Required": "{{webUIName}} бэкенд требуемый",
"a user": "юзер",
"About": "Относительно",
"a user": "пользователь",
"About": "Об",
"Account": "Аккаунт",
"Action": "Действие",
"Add a model": "Добавьте модель",
"Add a model tag name": "Добавьте тэг модели имя",
"Add a short description about what this modelfile does": "Добавьте краткое описание, что делает этот моделифайл",
"Add a short title for this prompt": "Добавьте краткое название для этого взаимодействия",
"Add a model tag name": "Добавьте имя тэга модели",
"Add a short description about what this modelfile does": "Добавьте краткое описание, что делает этот моделфайл",
"Add a short title for this prompt": "Добавьте краткий заголовок для этого ввода",
"Add a tag": "Добавьте тэг",
"Add Docs": "Добавьте документы",
"Add Files": "Добавьте файлы",
"Add message": "Добавьте message",
"Add message": "Добавьте сообщение",
"add tags": "Добавьте тэгы",
"Adjusting these settings will apply changes universally to all users.": "Регулирующий этих настроек приведет к изменениям для все юзеры.",
"Adjusting these settings will apply changes universally to all users.": "Регулирующий этих настроек приведет к изменениям для все пользователей.",
"admin": "админ",
"Admin Panel": "Панель админ",
"Admin Settings": "Настройки админ",
"Advanced Parameters": "Расширенные Параметры",
"all": "всё",
"All Users": "Всё юзеры",
"Allow": "Дозволять",
"All Users": "Все пользователи",
"Allow": "Разрешить",
"Allow Chat Deletion": "Дозволять удаление чат",
"alphanumeric characters and hyphens": "буквенно цифровые символы и дефисы",
"Already have an account?": "у вас есть аккаунт уже?",
"Already have an account?": "у вас уже есть аккаунт?",
"an assistant": "ассистент",
"and": "и",
"API Base URL": "Базовый адрес API",
"API Key": "Ключ API",
"API RPM": "API RPM",
"are allowed - Activate this command by typing": "разрешено - активируйте эту команду набором",
"are allowed - Activate this command by typing": "разрешено - активируйте эту команду вводом",
"Are you sure?": "Вы уверены?",
"Audio": "Аудио",
"Auto-playback response": "Автоматическое воспроизведение ответа",

View File

@ -1,10 +1,10 @@
import { APP_NAME } from '$lib/constants';
import { writable } from 'svelte/store';
import { type Writable, writable } from 'svelte/store';
// Backend
export const WEBUI_NAME = writable(APP_NAME);
export const config = writable(undefined);
export const user = writable(undefined);
export const config: Writable<Config | undefined> = writable(undefined);
export const user: Writable<SessionUser | undefined> = writable(undefined);
// Frontend
export const MODEL_DOWNLOAD_POOL = writable({});
@ -14,10 +14,10 @@ export const chatId = writable('');
export const chats = writable([]);
export const tags = writable([]);
export const models = writable([]);
export const models: Writable<Model[]> = writable([]);
export const modelfiles = writable([]);
export const prompts = writable([]);
export const prompts: Writable<Prompt[]> = writable([]);
export const documents = writable([
{
collection_name: 'collection_name',
@ -33,6 +33,109 @@ export const documents = writable([
}
]);
export const settings = writable({});
export const settings: Writable<Settings> = writable({});
export const showSettings = writable(false);
export const showChangelog = writable(false);
type Model = OpenAIModel | OllamaModel;
type OpenAIModel = {
id: string;
name: string;
external: boolean;
source?: string;
};
type OllamaModel = {
id: string;
name: string;
// Ollama specific fields
details: OllamaModelDetails;
size: number;
description: string;
model: string;
modified_at: string;
digest: string;
};
type OllamaModelDetails = {
parent_model: string;
format: string;
family: string;
families: string[] | null;
parameter_size: string;
quantization_level: string;
};
type Settings = {
models?: string[];
conversationMode?: boolean;
speechAutoSend?: boolean;
responseAutoPlayback?: boolean;
audio?: AudioSettings;
showUsername?: boolean;
saveChatHistory?: boolean;
notificationEnabled?: boolean;
title?: TitleSettings;
system?: string;
requestFormat?: string;
keepAlive?: string;
seed?: number;
temperature?: string;
repeat_penalty?: string;
top_k?: string;
top_p?: string;
num_ctx?: string;
options?: ModelOptions;
};
type ModelOptions = {
stop?: boolean;
};
type AudioSettings = {
STTEngine?: string;
TTSEngine?: string;
speaker?: string;
};
type TitleSettings = {
auto?: boolean;
model?: string;
modelExternal?: string;
prompt?: string;
};
type Prompt = {
command: string;
user_id: string;
title: string;
content: string;
timestamp: number;
};
type Config = {
status?: boolean;
name?: string;
version?: string;
default_locale?: string;
images?: boolean;
default_models?: string[];
default_prompt_suggestions?: PromptSuggestion[];
trusted_header_auth?: boolean;
};
type PromptSuggestion = {
content: string;
title: [string, string];
};
type SessionUser = {
id: string;
email: string;
name: string;
role: string;
profile_image_url: string;
};

View File

@ -35,7 +35,6 @@ export const sanitizeResponseContent = (content: string) => {
.replace(/<\|[a-z]+\|$/, '')
.replace(/<$/, '')
.replaceAll(/<\|[a-z]+\|>/g, ' ')
.replaceAll(/<br\s?\/?>/gi, '\n')
.replaceAll('<', '&lt;')
.trim();
};

View File

@ -39,6 +39,7 @@
import { RAGTemplate } from '$lib/utils/rag';
import { LITELLM_API_BASE_URL, OLLAMA_API_BASE_URL, OPENAI_API_BASE_URL } from '$lib/constants';
import { WEBUI_BASE_URL } from '$lib/constants';
import { createOpenAITextStream } from '$lib/apis/streaming';
const i18n = getContext('i18n');
@ -599,38 +600,22 @@
.pipeThrough(splitStream('\n'))
.getReader();
while (true) {
const { value, done } = await reader.read();
const textStream = await createOpenAITextStream(reader, $settings.splitLargeChunks);
console.log(textStream);
for await (const update of textStream) {
const { value, done } = update;
if (done || stopResponseFlag || _chatId !== $chatId) {
responseMessage.done = true;
messages = messages;
break;
}
try {
let lines = value.split('\n');
for (const line of lines) {
if (line !== '') {
console.log(line);
if (line === 'data: [DONE]') {
responseMessage.done = true;
messages = messages;
} else {
let data = JSON.parse(line.replace(/^data: /, ''));
console.log(data);
if (responseMessage.content == '' && data.choices[0].delta.content == '\n') {
continue;
} else {
responseMessage.content += data.choices[0].delta.content ?? '';
messages = messages;
}
}
}
}
} catch (error) {
console.log(error);
if (responseMessage.content == '' && value == '\n') {
continue;
} else {
responseMessage.content += value;
messages = messages;
}
if ($settings.notificationEnabled && !document.hasFocus()) {

View File

@ -42,6 +42,7 @@
OLLAMA_API_BASE_URL,
WEBUI_BASE_URL
} from '$lib/constants';
import { createOpenAITextStream } from '$lib/apis/streaming';
const i18n = getContext('i18n');
@ -611,38 +612,22 @@
.pipeThrough(splitStream('\n'))
.getReader();
while (true) {
const { value, done } = await reader.read();
const textStream = await createOpenAITextStream(reader, $settings.splitLargeChunks);
console.log(textStream);
for await (const update of textStream) {
const { value, done } = update;
if (done || stopResponseFlag || _chatId !== $chatId) {
responseMessage.done = true;
messages = messages;
break;
}
try {
let lines = value.split('\n');
for (const line of lines) {
if (line !== '') {
console.log(line);
if (line === 'data: [DONE]') {
responseMessage.done = true;
messages = messages;
} else {
let data = JSON.parse(line.replace(/^data: /, ''));
console.log(data);
if (responseMessage.content == '' && data.choices[0].delta.content == '\n') {
continue;
} else {
responseMessage.content += data.choices[0].delta.content ?? '';
messages = messages;
}
}
}
}
} catch (error) {
console.log(error);
if (responseMessage.content == '' && value == '\n') {
continue;
} else {
responseMessage.content += value;
messages = messages;
}
if ($settings.notificationEnabled && !document.hasFocus()) {

View File

@ -0,0 +1 @@
{}