diff --git a/Dockerfile b/Dockerfile index 6cf8ded28..f19952909 100644 --- a/Dockerfile +++ b/Dockerfile @@ -93,15 +93,16 @@ RUN if [ "$USE_OLLAMA" = "true" ]; then \ # install python dependencies COPY ./backend/requirements.txt ./requirements.txt -RUN if [ "$USE_CUDA" = "true" ]; then \ +RUN pip3 install uv && \ + if [ "$USE_CUDA" = "true" ]; then \ # If you use CUDA the whisper and embedding model will be downloaded on first use pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/$USE_CUDA_DOCKER_VER --no-cache-dir && \ - pip3 install -r requirements.txt --no-cache-dir && \ + uv pip install --system -r requirements.txt --no-cache-dir && \ python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])" && \ python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device='cpu')"; \ else \ pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && \ - pip3 install -r requirements.txt --no-cache-dir && \ + uv pip install --system -r requirements.txt --no-cache-dir && \ python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])" && \ python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device='cpu')"; \ fi