feat: compress audio

Co-Authored-By: Beck Bekmyradov <47065940+bekmuradov@users.noreply.github.com>
This commit is contained in:
Timothy J. Baek 2024-09-30 00:30:12 +02:00
parent 8206c47a47
commit 7152af949b
3 changed files with 139 additions and 97 deletions

View File

@ -5,6 +5,8 @@ import os
import uuid
from functools import lru_cache
from pathlib import Path
from pydub import AudioSegment
from pydub.silence import split_on_silence
import requests
from open_webui.config import (
@ -35,7 +37,12 @@ from fastapi import Depends, FastAPI, File, HTTPException, Request, UploadFile,
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import FileResponse
from pydantic import BaseModel
from open_webui.utils.utils import get_admin_user, get_current_user, get_verified_user
from open_webui.utils.utils import get_admin_user, get_verified_user
# Constants
MAX_FILE_SIZE_MB = 25
MAX_FILE_SIZE = MAX_FILE_SIZE_MB * 1024 * 1024 # Convert MB to bytes
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["AUDIO"])
@ -353,10 +360,103 @@ async def speech(request: Request, user=Depends(get_verified_user)):
)
def transcribe(file_path):
print("transcribe", file_path)
filename = os.path.basename(file_path)
file_dir = os.path.dirname(file_path)
id = filename.split(".")[0]
if app.state.config.STT_ENGINE == "":
from faster_whisper import WhisperModel
whisper_kwargs = {
"model_size_or_path": WHISPER_MODEL,
"device": whisper_device_type,
"compute_type": "int8",
"download_root": WHISPER_MODEL_DIR,
"local_files_only": not WHISPER_MODEL_AUTO_UPDATE,
}
log.debug(f"whisper_kwargs: {whisper_kwargs}")
try:
model = WhisperModel(**whisper_kwargs)
except Exception:
log.warning(
"WhisperModel initialization failed, attempting download with local_files_only=False"
)
whisper_kwargs["local_files_only"] = False
model = WhisperModel(**whisper_kwargs)
segments, info = model.transcribe(file_path, beam_size=5)
log.info(
"Detected language '%s' with probability %f"
% (info.language, info.language_probability)
)
transcript = "".join([segment.text for segment in list(segments)])
data = {"text": transcript.strip()}
# save the transcript to a json file
transcript_file = f"{file_dir}/{id}.json"
with open(transcript_file, "w") as f:
json.dump(data, f)
print(data)
return data
elif app.state.config.STT_ENGINE == "openai":
if is_mp4_audio(file_path):
print("is_mp4_audio")
os.rename(file_path, file_path.replace(".wav", ".mp4"))
# Convert MP4 audio file to WAV format
convert_mp4_to_wav(file_path.replace(".wav", ".mp4"), file_path)
headers = {"Authorization": f"Bearer {app.state.config.STT_OPENAI_API_KEY}"}
files = {"file": (filename, open(file_path, "rb"))}
data = {"model": app.state.config.STT_MODEL}
print(files, data)
r = None
try:
r = requests.post(
url=f"{app.state.config.STT_OPENAI_API_BASE_URL}/audio/transcriptions",
headers=headers,
files=files,
data=data,
)
r.raise_for_status()
data = r.json()
# save the transcript to a json file
transcript_file = f"{file_dir}/{id}.json"
with open(transcript_file, "w") as f:
json.dump(data, f)
print(data)
return data
except Exception as e:
log.exception(e)
error_detail = "Open WebUI: Server Connection Error"
if r is not None:
try:
res = r.json()
if "error" in res:
error_detail = f"External: {res['error']['message']}"
except Exception:
error_detail = f"External: {e}"
raise error_detail
@app.post("/transcriptions")
def transcribe(
def transcription(
file: UploadFile = File(...),
user=Depends(get_current_user),
user=Depends(get_verified_user),
):
log.info(f"file.content_type: {file.content_type}")
@ -368,111 +468,53 @@ def transcribe(
try:
ext = file.filename.split(".")[-1]
id = uuid.uuid4()
filename = f"{id}.{ext}"
contents = file.file.read()
file_dir = f"{CACHE_DIR}/audio/transcriptions"
os.makedirs(file_dir, exist_ok=True)
file_path = f"{file_dir}/{filename}"
print(filename)
contents = file.file.read()
with open(file_path, "wb") as f:
f.write(contents)
f.close()
if app.state.config.STT_ENGINE == "":
from faster_whisper import WhisperModel
try:
if os.path.getsize(file_path) > MAX_FILE_SIZE: # file is bigger than 25MB
log.debug(f"File size is larger than {MAX_FILE_SIZE_MB}MB")
audio = AudioSegment.from_file(file_path)
audio = audio.set_frame_rate(16000).set_channels(1) # Compress audio
compressed_path = f"{file_dir}/{id}_compressed.opus"
audio.export(compressed_path, format="opus", bitrate="32k")
log.debug(f"Compressed audio to {compressed_path}")
file_path = compressed_path
whisper_kwargs = {
"model_size_or_path": WHISPER_MODEL,
"device": whisper_device_type,
"compute_type": "int8",
"download_root": WHISPER_MODEL_DIR,
"local_files_only": not WHISPER_MODEL_AUTO_UPDATE,
}
log.debug(f"whisper_kwargs: {whisper_kwargs}")
try:
model = WhisperModel(**whisper_kwargs)
except Exception:
log.warning(
"WhisperModel initialization failed, attempting download with local_files_only=False"
)
whisper_kwargs["local_files_only"] = False
model = WhisperModel(**whisper_kwargs)
segments, info = model.transcribe(file_path, beam_size=5)
log.info(
"Detected language '%s' with probability %f"
% (info.language, info.language_probability)
)
transcript = "".join([segment.text for segment in list(segments)])
data = {"text": transcript.strip()}
# save the transcript to a json file
transcript_file = f"{file_dir}/{id}.json"
with open(transcript_file, "w") as f:
json.dump(data, f)
print(data)
if (
os.path.getsize(file_path) > MAX_FILE_SIZE
): # Still larger than 25MB after compression
chunks = split_on_silence(
audio, min_silence_len=500, silence_thresh=-40
)
texts = []
for i, chunk in enumerate(chunks):
chunk_file_path = f"{file_dir}/{id}_chunk{i}.{ext}"
chunk.export(chunk_file_path, format=ext)
text = transcribe(chunk_file_path)
texts.append(text)
data = {"text": " ".join(texts)}
else:
data = transcribe(file_path)
else:
data = transcribe(file_path)
return data
elif app.state.config.STT_ENGINE == "openai":
if is_mp4_audio(file_path):
print("is_mp4_audio")
os.rename(file_path, file_path.replace(".wav", ".mp4"))
# Convert MP4 audio file to WAV format
convert_mp4_to_wav(file_path.replace(".wav", ".mp4"), file_path)
headers = {"Authorization": f"Bearer {app.state.config.STT_OPENAI_API_KEY}"}
files = {"file": (filename, open(file_path, "rb"))}
data = {"model": app.state.config.STT_MODEL}
print(files, data)
r = None
try:
r = requests.post(
url=f"{app.state.config.STT_OPENAI_API_BASE_URL}/audio/transcriptions",
headers=headers,
files=files,
data=data,
)
r.raise_for_status()
data = r.json()
# save the transcript to a json file
transcript_file = f"{file_dir}/{id}.json"
with open(transcript_file, "w") as f:
json.dump(data, f)
print(data)
return data
except Exception as e:
log.exception(e)
error_detail = "Open WebUI: Server Connection Error"
if r is not None:
try:
res = r.json()
if "error" in res:
error_detail = f"External: {res['error']['message']}"
except Exception:
error_detail = f"External: {e}"
raise HTTPException(
status_code=r.status_code if r != None else 500,
detail=error_detail,
)
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
except Exception as e:
log.exception(e)

View File

@ -700,7 +700,7 @@
childrenIds: [],
role: 'user',
content: userPrompt,
files: chatFiles.length > 0 ? chatFiles : undefined,
files: _files.length > 0 ? _files : undefined,
timestamp: Math.floor(Date.now() / 1000), // Unix epoch
models: selectedModels
};

View File

@ -54,7 +54,7 @@
</div>
<div>
<div class="flex flex-col md:flex-row gap-1 justify-between w-full">
<div class="flex flex-col items-center md:flex-row gap-1 justify-between w-full">
<div class=" flex flex-wrap text-sm gap-1 text-gray-500">
{#if file.size}
<div class="capitalize shrink-0">{formatFileSize(file.size)}</div>