mirror of
https://github.com/open-webui/open-webui
synced 2025-04-28 02:01:41 +00:00
Merge pull request #8594 from jayteaftw/main
feat: Support for instruct/prefixing embeddings
This commit is contained in:
commit
433b5bddc1
backend/open_webui
@ -1783,6 +1783,18 @@ RAG_EMBEDDING_BATCH_SIZE = PersistentConfig(
|
|||||||
),
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
RAG_EMBEDDING_QUERY_PREFIX = (
|
||||||
|
os.environ.get("RAG_EMBEDDING_QUERY_PREFIX", None)
|
||||||
|
)
|
||||||
|
|
||||||
|
RAG_EMBEDDING_PASSAGE_PREFIX = (
|
||||||
|
os.environ.get("RAG_EMBEDDING_PASSAGE_PREFIX", None)
|
||||||
|
)
|
||||||
|
|
||||||
|
RAG_EMBEDDING_PREFIX_FIELD_NAME = (
|
||||||
|
os.environ.get("RAG_EMBEDDING_PREFIX_FIELD_NAME", None)
|
||||||
|
)
|
||||||
|
|
||||||
RAG_RERANKING_MODEL = PersistentConfig(
|
RAG_RERANKING_MODEL = PersistentConfig(
|
||||||
"RAG_RERANKING_MODEL",
|
"RAG_RERANKING_MODEL",
|
||||||
"rag.reranking_model",
|
"rag.reranking_model",
|
||||||
|
@ -18,11 +18,17 @@ from open_webui.models.files import Files
|
|||||||
|
|
||||||
from open_webui.retrieval.vector.main import GetResult
|
from open_webui.retrieval.vector.main import GetResult
|
||||||
|
|
||||||
|
|
||||||
from open_webui.env import (
|
from open_webui.env import (
|
||||||
SRC_LOG_LEVELS,
|
SRC_LOG_LEVELS,
|
||||||
OFFLINE_MODE,
|
OFFLINE_MODE,
|
||||||
ENABLE_FORWARD_USER_INFO_HEADERS,
|
ENABLE_FORWARD_USER_INFO_HEADERS,
|
||||||
)
|
)
|
||||||
|
from open_webui.config import (
|
||||||
|
RAG_EMBEDDING_QUERY_PREFIX,
|
||||||
|
RAG_EMBEDDING_PASSAGE_PREFIX,
|
||||||
|
RAG_EMBEDDING_PREFIX_FIELD_NAME
|
||||||
|
)
|
||||||
|
|
||||||
log = logging.getLogger(__name__)
|
log = logging.getLogger(__name__)
|
||||||
log.setLevel(SRC_LOG_LEVELS["RAG"])
|
log.setLevel(SRC_LOG_LEVELS["RAG"])
|
||||||
@ -47,7 +53,7 @@ class VectorSearchRetriever(BaseRetriever):
|
|||||||
) -> list[Document]:
|
) -> list[Document]:
|
||||||
result = VECTOR_DB_CLIENT.search(
|
result = VECTOR_DB_CLIENT.search(
|
||||||
collection_name=self.collection_name,
|
collection_name=self.collection_name,
|
||||||
vectors=[self.embedding_function(query)],
|
vectors=[self.embedding_function(query,RAG_EMBEDDING_QUERY_PREFIX)],
|
||||||
limit=self.top_k,
|
limit=self.top_k,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -250,7 +256,7 @@ def query_collection(
|
|||||||
) -> dict:
|
) -> dict:
|
||||||
results = []
|
results = []
|
||||||
for query in queries:
|
for query in queries:
|
||||||
query_embedding = embedding_function(query)
|
query_embedding = embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)
|
||||||
for collection_name in collection_names:
|
for collection_name in collection_names:
|
||||||
if collection_name:
|
if collection_name:
|
||||||
try:
|
try:
|
||||||
@ -328,33 +334,33 @@ def get_embedding_function(
|
|||||||
embedding_batch_size,
|
embedding_batch_size,
|
||||||
):
|
):
|
||||||
if embedding_engine == "":
|
if embedding_engine == "":
|
||||||
return lambda query, user=None: embedding_function.encode(query).tolist()
|
return lambda query, prefix, user=None: embedding_function.encode(query, prompt = prefix if prefix else None).tolist()
|
||||||
elif embedding_engine in ["ollama", "openai"]:
|
elif embedding_engine in ["ollama", "openai"]:
|
||||||
func = lambda query, user=None: generate_embeddings(
|
func = lambda query, prefix, user=None: generate_embeddings(
|
||||||
engine=embedding_engine,
|
engine=embedding_engine,
|
||||||
model=embedding_model,
|
model=embedding_model,
|
||||||
text=query,
|
text=query,
|
||||||
|
prefix=prefix,
|
||||||
url=url,
|
url=url,
|
||||||
key=key,
|
key=key,
|
||||||
user=user,
|
user=user,
|
||||||
)
|
)
|
||||||
|
def generate_multiple(query, prefix, user, func):
|
||||||
def generate_multiple(query, user, func):
|
|
||||||
if isinstance(query, list):
|
if isinstance(query, list):
|
||||||
embeddings = []
|
embeddings = []
|
||||||
for i in range(0, len(query), embedding_batch_size):
|
for i in range(0, len(query), embedding_batch_size):
|
||||||
embeddings.extend(
|
embeddings.extend(
|
||||||
func(query[i : i + embedding_batch_size], user=user)
|
func(query[i : i + embedding_batch_size], prefix=prefix, user=user)
|
||||||
)
|
)
|
||||||
return embeddings
|
return embeddings
|
||||||
else:
|
else:
|
||||||
return func(query, user)
|
return func(query, prefix, user)
|
||||||
|
return lambda query, prefix, user=None: generate_multiple(query, prefix, user, func)
|
||||||
return lambda query, user=None: generate_multiple(query, user, func)
|
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unknown embedding engine: {embedding_engine}")
|
raise ValueError(f"Unknown embedding engine: {embedding_engine}")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def get_sources_from_files(
|
def get_sources_from_files(
|
||||||
request,
|
request,
|
||||||
files,
|
files,
|
||||||
@ -572,9 +578,17 @@ def generate_openai_batch_embeddings(
|
|||||||
texts: list[str],
|
texts: list[str],
|
||||||
url: str = "https://api.openai.com/v1",
|
url: str = "https://api.openai.com/v1",
|
||||||
key: str = "",
|
key: str = "",
|
||||||
user: UserModel = None,
|
prefix: str = None,
|
||||||
|
user: UserModel = None
|
||||||
) -> Optional[list[list[float]]]:
|
) -> Optional[list[list[float]]]:
|
||||||
try:
|
try:
|
||||||
|
json_data = {
|
||||||
|
"input": texts,
|
||||||
|
"model": model
|
||||||
|
}
|
||||||
|
if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME,str) and isinstance(prefix,str):
|
||||||
|
json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
|
||||||
|
|
||||||
r = requests.post(
|
r = requests.post(
|
||||||
f"{url}/embeddings",
|
f"{url}/embeddings",
|
||||||
headers={
|
headers={
|
||||||
@ -591,7 +605,7 @@ def generate_openai_batch_embeddings(
|
|||||||
else {}
|
else {}
|
||||||
),
|
),
|
||||||
},
|
},
|
||||||
json={"input": texts, "model": model},
|
json=json_data,
|
||||||
)
|
)
|
||||||
r.raise_for_status()
|
r.raise_for_status()
|
||||||
data = r.json()
|
data = r.json()
|
||||||
@ -605,9 +619,21 @@ def generate_openai_batch_embeddings(
|
|||||||
|
|
||||||
|
|
||||||
def generate_ollama_batch_embeddings(
|
def generate_ollama_batch_embeddings(
|
||||||
model: str, texts: list[str], url: str, key: str = "", user: UserModel = None
|
model: str,
|
||||||
|
texts: list[str],
|
||||||
|
url: str,
|
||||||
|
key: str = "",
|
||||||
|
prefix: str = None,
|
||||||
|
user: UserModel = None
|
||||||
) -> Optional[list[list[float]]]:
|
) -> Optional[list[list[float]]]:
|
||||||
try:
|
try:
|
||||||
|
json_data = {
|
||||||
|
"input": texts,
|
||||||
|
"model": model
|
||||||
|
}
|
||||||
|
if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME,str) and isinstance(prefix,str):
|
||||||
|
json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
|
||||||
|
|
||||||
r = requests.post(
|
r = requests.post(
|
||||||
f"{url}/api/embed",
|
f"{url}/api/embed",
|
||||||
headers={
|
headers={
|
||||||
@ -624,7 +650,7 @@ def generate_ollama_batch_embeddings(
|
|||||||
else {}
|
else {}
|
||||||
),
|
),
|
||||||
},
|
},
|
||||||
json={"input": texts, "model": model},
|
json=json_data,
|
||||||
)
|
)
|
||||||
r.raise_for_status()
|
r.raise_for_status()
|
||||||
data = r.json()
|
data = r.json()
|
||||||
@ -638,33 +664,32 @@ def generate_ollama_batch_embeddings(
|
|||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
def generate_embeddings(engine: str, model: str, text: Union[str, list[str]], **kwargs):
|
def generate_embeddings(engine: str, model: str, text: Union[str, list[str]], prefix: Union[str , None] = None, **kwargs):
|
||||||
url = kwargs.get("url", "")
|
url = kwargs.get("url", "")
|
||||||
key = kwargs.get("key", "")
|
key = kwargs.get("key", "")
|
||||||
user = kwargs.get("user")
|
user = kwargs.get("user")
|
||||||
|
|
||||||
|
if prefix is not None and RAG_EMBEDDING_PREFIX_FIELD_NAME is None:
|
||||||
|
if isinstance(text, list):
|
||||||
|
text = [f'{prefix}{text_element}' for text_element in text]
|
||||||
|
else:
|
||||||
|
text = f'{prefix}{text}'
|
||||||
|
|
||||||
if engine == "ollama":
|
if engine == "ollama":
|
||||||
if isinstance(text, list):
|
if isinstance(text, list):
|
||||||
embeddings = generate_ollama_batch_embeddings(
|
embeddings = generate_ollama_batch_embeddings(
|
||||||
**{"model": model, "texts": text, "url": url, "key": key, "user": user}
|
**{"model": model, "texts": text, "url": url, "key": key, "prefix": prefix, "user": user}
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
embeddings = generate_ollama_batch_embeddings(
|
embeddings = generate_ollama_batch_embeddings(
|
||||||
**{
|
**{"model": model, "texts": [text], "url": url, "key": key, "prefix": prefix, "user": user}
|
||||||
"model": model,
|
|
||||||
"texts": [text],
|
|
||||||
"url": url,
|
|
||||||
"key": key,
|
|
||||||
"user": user,
|
|
||||||
}
|
|
||||||
)
|
)
|
||||||
return embeddings[0] if isinstance(text, str) else embeddings
|
return embeddings[0] if isinstance(text, str) else embeddings
|
||||||
elif engine == "openai":
|
elif engine == "openai":
|
||||||
if isinstance(text, list):
|
if isinstance(text, list):
|
||||||
embeddings = generate_openai_batch_embeddings(model, text, url, key, user)
|
embeddings = generate_openai_batch_embeddings(model, text, url, key, prefix, user)
|
||||||
else:
|
else:
|
||||||
embeddings = generate_openai_batch_embeddings(model, [text], url, key, user)
|
embeddings = generate_openai_batch_embeddings(model, [text], url, key, prefix, user)
|
||||||
|
|
||||||
return embeddings[0] if isinstance(text, str) else embeddings
|
return embeddings[0] if isinstance(text, str) else embeddings
|
||||||
|
|
||||||
|
|
||||||
@ -700,9 +725,10 @@ class RerankCompressor(BaseDocumentCompressor):
|
|||||||
else:
|
else:
|
||||||
from sentence_transformers import util
|
from sentence_transformers import util
|
||||||
|
|
||||||
query_embedding = self.embedding_function(query)
|
query_embedding = self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)
|
||||||
document_embedding = self.embedding_function(
|
document_embedding = self.embedding_function(
|
||||||
[doc.page_content for doc in documents]
|
[doc.page_content for doc in documents],
|
||||||
|
RAG_EMBEDDING_PASSAGE_PREFIX
|
||||||
)
|
)
|
||||||
scores = util.cos_sim(query_embedding, document_embedding)[0]
|
scores = util.cos_sim(query_embedding, document_embedding)[0]
|
||||||
|
|
||||||
|
@ -74,7 +74,6 @@ from open_webui.utils.misc import (
|
|||||||
)
|
)
|
||||||
from open_webui.utils.auth import get_admin_user, get_verified_user
|
from open_webui.utils.auth import get_admin_user, get_verified_user
|
||||||
|
|
||||||
|
|
||||||
from open_webui.config import (
|
from open_webui.config import (
|
||||||
ENV,
|
ENV,
|
||||||
RAG_EMBEDDING_MODEL_AUTO_UPDATE,
|
RAG_EMBEDDING_MODEL_AUTO_UPDATE,
|
||||||
@ -83,6 +82,8 @@ from open_webui.config import (
|
|||||||
RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
|
RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
|
||||||
UPLOAD_DIR,
|
UPLOAD_DIR,
|
||||||
DEFAULT_LOCALE,
|
DEFAULT_LOCALE,
|
||||||
|
RAG_EMBEDDING_PASSAGE_PREFIX,
|
||||||
|
RAG_EMBEDDING_QUERY_PREFIX
|
||||||
)
|
)
|
||||||
from open_webui.env import (
|
from open_webui.env import (
|
||||||
SRC_LOG_LEVELS,
|
SRC_LOG_LEVELS,
|
||||||
@ -891,7 +892,7 @@ def save_docs_to_vector_db(
|
|||||||
)
|
)
|
||||||
|
|
||||||
embeddings = embedding_function(
|
embeddings = embedding_function(
|
||||||
list(map(lambda x: x.replace("\n", " "), texts)), user=user
|
list(map(lambda x: x.replace("\n", " "), texts)), prefix=RAG_EMBEDDING_PASSAGE_PREFIX, user=user
|
||||||
)
|
)
|
||||||
|
|
||||||
items = [
|
items = [
|
||||||
@ -1533,8 +1534,9 @@ def query_doc_handler(
|
|||||||
return query_doc(
|
return query_doc(
|
||||||
collection_name=form_data.collection_name,
|
collection_name=form_data.collection_name,
|
||||||
query_embedding=request.app.state.EMBEDDING_FUNCTION(
|
query_embedding=request.app.state.EMBEDDING_FUNCTION(
|
||||||
form_data.query, user=user
|
form_data.query, prefix=RAG_EMBEDDING_QUERY_PREFIX, user=user
|
||||||
),
|
),
|
||||||
|
|
||||||
k=form_data.k if form_data.k else request.app.state.config.TOP_K,
|
k=form_data.k if form_data.k else request.app.state.config.TOP_K,
|
||||||
user=user,
|
user=user,
|
||||||
)
|
)
|
||||||
@ -1661,7 +1663,7 @@ if ENV == "dev":
|
|||||||
|
|
||||||
@router.get("/ef/{text}")
|
@router.get("/ef/{text}")
|
||||||
async def get_embeddings(request: Request, text: Optional[str] = "Hello World!"):
|
async def get_embeddings(request: Request, text: Optional[str] = "Hello World!"):
|
||||||
return {"result": request.app.state.EMBEDDING_FUNCTION(text)}
|
return {"result": request.app.state.EMBEDDING_FUNCTION(text, RAG_EMBEDDING_QUERY_PREFIX)}
|
||||||
|
|
||||||
|
|
||||||
class BatchProcessFilesForm(BaseModel):
|
class BatchProcessFilesForm(BaseModel):
|
||||||
|
Loading…
Reference in New Issue
Block a user